Primo Attinà
Alenia Aeronautica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Primo Attinà.
Astronomy and Astrophysics | 2003
Niels Lund; C. Budtz-Jørgensen; N. J. Westergaard; S. Brandt; I. L. Rasmussen; Allan Hornstrup; C. A. Oxborrow; J. Chenevez; P. A. Jensen; S. Laursen; K. H. Andersen; P. B. Mogensen; K. Omø; S. M. Pedersen; Josef Polny; H. Andersson; Tor Andersson; Veikko J. Kamarainen; O. Vilhu; J. Huovelin; S. Maisala; M. Morawski; G. Juchnikowski; Enrico Costa; M. Feroci; A. Rubini; Massimo Rapisarda; E. Morelli; V. Carassiti; F. Frontera
The JEM-X monitor provides X-ray spectra and imaging with arcminute angular resolution in the 3 to 35 keV band. The good angular resolution and the low energy response of JEM-X plays an important role in the identification of gamma ray sources and in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture instrument consisting of two identical, coaligned telescopes. Each of the detectors has a sensitive area of 500 cm 2 , and views the sky through its own coded aperture mask. The two coded masks are inverted with respect to each other and provides an angular resolution of 3 0 across an eective field of view of about 10 diameter.
Experimental Astronomy | 2013
Paolo Soffitta; X. Barcons; R. Bellazzini; Joao Braga; Enrico Costa; George W. Fraser; Szymon Gburek; J. Huovelin; Giorgio Matt; M. Pearce; Juri Poutanen; V. Reglero; A. Santangelo; R. Sunyaev; Gianpiero Tagliaferri; Martin C. Weisskopf; Roberto Aloisio; E. Amato; Primo Attinà; Magnus Axelsson; L. Baldini; S. Basso; Stefano Bianchi; Pasquale Blasi; J. Bregeon; Alessandro Brez; N. Bucciantini; L. Burderi; Vadim Burwitz; P. Casella
Abstract X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2–10 keV band in 105 s for pointed observations, and 0.6 % for an X10 class solar flare in the 15–35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin × 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 μs. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut für extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
Experimental Astronomy | 2010
Enrico Costa; R. Bellazzini; Gianpiero Tagliaferri; Giorgio Matt; A. Argan; Primo Attinà; L. Baldini; S. Basso; Alessandro Brez; Oberto Citterio; Sergio Di Cosimo; Vincenzo Cotroneo; Sergio Fabiani; M. Feroci; Antonella Ferri; Luca Latronico; Francesco Lazzarotto; M. Minuti; E. Morelli; Fabio Muleri; Lucio Nicolini; Giovanni Pareschi; Giuseppe Di Persio; Michele Pinchera; M. Razzano; Luigia Reboa; A. Rubini; Antonio Salonico; C. Sgrò; Paolo Soffitta
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.
Proceedings of SPIE | 2011
Enrico Virgilli; Filippo Frontera; V. Valsan; V. Liccardo; E. Caroli; J. B. Stephen; F. Cassese; L. Recanatesi; M. Pecora; S. Mottini; Primo Attinà; B. Negri
We present the LAUE project devoted to develop an advanced technology for building a high focal length Laue lens for soft gamma-ray astronomy (80-600 keV). The final goal is to develop a focusing optics that can improve the current sensitivity in the above energy band by 2 orders of magnitude.
Proceedings of SPIE | 2009
Giovanni Pareschi; Gianpiero Tagliaferri; Primo Attinà; S. Basso; G. Borghi; Oberto Citterio; M. Civitani; Vincenzo Cotroneo; B. Negri; Giorgia Sironi; D. Spiga; Dervis Vernani; Giuseppe Valsecchi
The New Hard X-ray Mission (NHXM) Italian project will be operated by 2016. It is based on 4 hard X-ray optics modules, each formed by 60 evenly spaced multilayer coated Wolter I mirror shells. For the achievement of a long focal length (10 m) an extensible bench is used. The pseudo-cylindrical Wolter I monolithic substrates where the multilayer coating is applied will be produced using the Ni electroforming replica approach. For three of the four mirror modules the focal plane will host a hybrid a detector system, consisting in the combination of a Si-based low energy detector (efficient from 0.5 up to ~ 15 keV) , on top of a high energy CdTe pixellated detector (efficient from 10 keV up to ~ 80 keV); the two cameras will be surrounded by both a passive shield and an anticoincidence shield. The total on axis effective area of the three telescopes at 1 keV and at 30 kev is of 1500 cm2 and 350 cm2 respectively. The angular resolution requirement is better than 20 arcsec HEW at 30 keV, while the Field of View at 50% vignetting is 12 arcmin (diameter). The payload is finally completed with the fourth telescope module, that will have as a focal plane detector a high sensitivity imaging photoelectric polarimetric system, operating from 2 up to 35 keV. In this paper, after an overview of the mission configuration and its scientific goals, we report on the design and development of the multilayer optics of the mission, based on thin replicated Ni mirror shells.
Proceedings of SPIE | 2008
Giovanni Pareschi; Primo Attinà; S. Basso; G. Borghi; Wolfgang Burkert; R. Buzzi; Oberto Citterio; M. Civitani; Paolo Conconi; Vincenzo Cotroneo; G. Cusumano; E. Dell'Orto; Michael J. Freyberg; Gisela D. Hartner; Paul Gorenstein; E. Mattaini; Francesco Mazzoleni; Giancarlo Parodi; S. Romaine; D. Spiga; G. Tagliaferri; R. Valtolina; Giuseppe Valsecchi; Dervis Vernani
The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.
Proceedings of SPIE | 2011
S. Basso; Giovanni Pareschi; Oberto Citterio; D. Spiga; Gianpiero Tagliaferri; Lorenzo Raimondi; Giorgia Sironi; Vincenzo Cotroneo; B. Salmaso; B. Negri; Primo Attinà; G. Borghi; A. Orlandi; Dervis Vernani; Giuseppe Valsecchi; Riccardo Binda; Fabio Marioni; Stefano Moretti; Moreno Castelnuovo; Wolfgang Burkert; Michael J. Freyberg; Vadim Burwitz
The New Hard X-ray Mission (NHXM) is a space X-ray telescope project focused on the 0.2 to 80 keV energy band, coupled to good imaging, spectroscopic and polarimetry detectors. The mission is currently undergoing the Phase B study and it has been proposed to ESA as a small-size mission to be further studied in the context of the M3 call; even if the mission was not downselected for this call, its study is being continued by ASI. The required performance is reached with a focal length of 10 m and with four mirror modules, each of them composed of 70 NiCo electroformed mirror shells. The reflecting coating is a broadband graded multilayer film, and the focal plane is mounted onto an extensible bench. Three of the four modules are equipped with a camera made of two detectors positioned in series, a Silicon low energy detector covering the range 0.2 to 15 keV and a high energy detector based on CdTe sensitive from 10 keV up to 120 keV. The fourth module is dedicated to the polarimetry to be performed with enhanced imaging capabilities. In this paper the latest development in the design and manufacturing of the optics is presented. The design has been optimized in order to increase as much as possible the effective area in the high-energy band. The manufacturing of the mirror shells benefits from the latest development in the mandrel production (figuring and polishing), in the multilayer deposition and in the integration improvements.
Proceedings of SPIE | 2010
S. Basso; Giovanni Pareschi; Oberto Citterio; D. Spiga; Gianpiero Tagliaferri; M. Civitani; Lorenzo Raimondi; Giorgia Sironi; Vincenzo Cotroneo; B. Negri; Giancarlo Parodi; Francesco Martelli; G. Borghi; A. Orlandi; Dervis Vernani; Giuseppe Valsecchi; Riccardo Binda; S. Romaine; Paul Gorenstein; Primo Attinà
The New Hard X-ray Mission (NHXM) project will be operated by 2016 and is currently undergoing the Phase B study. It is based on 4 hard X-ray optics modules, each formed by 60 evenly spaced multilayer coated Wolter I mirror shells. An extensible bench is used to reach the 10 m focal length. The Wolter I monolithic substrates with multilayer coating are produced in NiCo by electroforming replication. Three of the mirror modules will host in the focal plane a hybrid a detector system (a soft X-ray Si DEPFET array plus a high energy CdTe detector). The detector of the fourth telescope will be a photoelectric polarimeter with imaging capabilities, operating from 2 up to 35 keV. The total on axis effective area of the three telescopes at 1 keV and 30 kev is of 1500 cm2 and 350 cm2 respectively, with an angular resolution of 20 arcsec HEW at 30 keV. In this paper we report on the design and development of the multilayer optics of the mission, based on thin replicated Ni mirror shells.
SPIE's International Symposium on Optical Science, Engineering, and Instrumentation | 1998
Livio Scarsi; Primo Attinà; O. Catalano; Carlo Nicola De Marzo; Salvatore Giarrusso; Ivan K. Kostadinov; Boris Krenov; David J. Lamb; John Linsley; Piero Mazzinghi; Roberto Stalio; Yoshiyuki Takahashi
One of the most challenging tissues in Astroparticle Physics is represented today by the observation of the energy spectrum of the Extreme Energy Cosmic Radiation. The very existence of particles with energy above 1020 eV and of neutrinos of comparable energy raises fundamental scientific questions in connection with their origin and propagation in the interstellar/intergalactic space. These particles can be detected through the gain showers produced in the Earth Atmosphere. The shower development is accompanied by emission of fluorescence in the atmosphere, in particular that induced in Nitrogen with characteristics spectral lines in the UV. Following a first suggestion by J. Linsley in the early 1980s, taken over by Y/ Takahashi, the fluorescence observation can be advantageously carried out by space. By using wide angel optics with large collecting surface, we can monitor a target area of atmosphere of the order of millions square kilometers x sr and corresponding mass above 1013 tons, allowing the detection of the very small flux values typical of the EECR and making possible the search of the elusive high energy neutrinos. AIRWATCH follows this approach. We describe the main scientific goals for the investigation of the EECR, High Energy neutrinos and of the Gamma Ray Bursts, together with the relevant connections to the problem of their origin. The experimental framework is outlined and a description is given of the space mission and of the observational strategy.
Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray | 2018
Carlo Lefevre; Raffaele Piazzolla; Alfredo Morbidini; Fabrizio Amici; Primo Attinà; Mauro Centrone; Ettore Del Monte; Sergio Di Cosimo; Giuseppe Di Persio; Yuri Evangelista; Sergio Fabiani; Riccardo Ferrazzoli; Pasqualino Loffredo; Luca Maiolo; Francesco Maita; Leandra Primicino; John Rankin; A. Rubini; Francesco Santoli; Paolo Soffitta; Antonino Tobia; Alessia Tortosa; Alessio Trois; Fabio Muleri
IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission.