Pritha Ray
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pritha Ray.
Circulation | 2006
Feng Cao; Shuan Lin; Xiaoyan Xie; Pritha Ray; Manishkumar Patel; Xianzhong Zhang; Micha Drukker; Scott J. Dylla; Andrew J. Connolly; Xiaoyuan Chen; Irving L. Weissman; Sanjiv S. Gambhir; Joseph C. Wu
Background— Recent studies have shown that stem cell therapy can promote tissue regeneration; however, monitoring stem cells in vivo remains problematic owing to limitations of conventional histological assays and imaging modalities. Methods and Results— Murine embryonic stem (ES) cells were stably transduced with a lentiviral vector carrying a novel triple-fusion (TF) reporter gene that consists of firefly luciferase, monomeric red fluorescence protein, and truncated thymidine kinase (fluc-mrfp-ttk). ES cell viability, proliferation, and differentiation ability were not adversely affected by either reporter genes or reporter probes compared with nontransduced control cells (P=NS). Afterward, 1×107 of ES cells carrying the TF reporter gene (ES-TF) were injected into the myocardium of adult nude rats (n=20). Control animals received nontransduced ES cells (n=6). At day 4, the bioluminescence and positron emission tomography signals in study animals were 3.7×107±5.8×106 photons · s−1 · cm−2 per steradian (sr) and 0.08±0.03% injected dose/g, respectively (P<0.05 versus control). Both signals increased progressively from week 1 to week 4, which indicated ES cell survival and proliferation in the host. Histological analysis demonstrated the formation of intracardiac and extracardiac teratomas. Finally, animals (n=4) that were treated with intraperitoneal injection of ganciclovir (50 mg/kg) did not develop teratomas when compared with control animals (n=4) treated with saline (1 mL/kg). Conclusion— This is the first study to characterize ES cells that stably express fluorescence, bioluminescence, and positron emission tomography reporter genes and monitor the kinetics of ES cell survival, proliferation, and migration. This versatile imaging platform should have broad applications for basic research and clinical studies on stem cell therapy.
Cancer Research | 2004
Pritha Ray; Abhijit De; Jung-Jun Min; Roger Y. Tsien; Sanjiv S. Gambhir
Imaging reporter gene expression in living subjects with various imaging modalities is a rapidly accelerating area of research. Applications of these technologies to cancer research, gene therapy, and transgenic models are rapidly expanding. We report construction and testing of several triple fusion reporter genes compatible with bioluminescence, fluorescence and positron emission tomography (PET) imaging. A triple fusion reporter vector harboring a bioluminescence synthetic Renilla luciferase (hrl) reporter gene, a reporter gene encoding the monomeric red fluorescence protein (mrfp1), and a mutant herpes simplex virus type 1 sr39 thymidine kinase [HSV1-truncated sr39tk (ttk); a PET reporter gene] was found to preserve the most activity for each protein component and was therefore investigated in detail. After validating the activities of all three proteins encoded by the fusion gene in cell culture, we imaged living mice bearing 293T cells transiently expressing the hrl-mrfp-ttk vector by microPET and using a highly sensitive cooled charge-coupled device camera compatible with both bioluminescence and fluorescence imaging. A lentiviral vector carrying the triple fusion reporter gene was constructed and used to isolate stable expressers by fluorescence-activated cell sorting. These stable 293T cells were further used to show good correlation (R2 ∼0.74–0.85) of signal from each component by imaging tumor xenografts in living mice with all three modalities. Furthermore, metastases of a human melanoma cell line (A375M) stably expressing the triple fusion were imaged by microPET and optical technologies over a 40–50-day time period in living mice. Imaging of reporter gene expression from single cells to living animals with the help of a single tri-fusion reporter gene will have the potential to accelerate translational cancer research.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Pritha Ray; H. Pimenta; Ramasamy Paulmurugan; Frank Berger; Michael E. Phelps; Meera Iyer; Sanjiv S. Gambhir
We are developing methods to image molecular and cellular events in living subjects. In this study, we validate imaging of protein—protein interactions in living mice by using bioluminescent optical imaging. We use the well studied yeast two-hybrid system adapted for mammalian cells and modify it to be inducible. We employ the NF-κB promoter to drive expression of two fusion proteins (VP16-MyoD and GAL4-ID). We modulate the NF-κB promoter through tumor necrosis factor α. Firefly luciferase reporter gene expression is driven by the interaction of MyoD and ID through a transcriptional activation strategy. We demonstrate the ability to detect this induced protein–protein interaction in cell culture and image this induced interaction in living mice by using transiently transfected cells. The current approach will be a valuable and potentially generalizable tool to noninvasively and quantitatively image protein–protein interactions in living subjects. The approaches validated should have important implications for the study of protein–protein interactions in cells maintained in their natural in vivo environment as well as for the in vivo evaluation of new pharmaceuticals targeted to modulate protein–protein interactions.
The FASEB Journal | 2009
Abhijit De; Pritha Ray; Andreas M. Loening; Sanjiv S. Gambhir
Taking advantage of the bioluminescence resonance energy transfer (BRET) phenomenon, we report the development of a highly photon‐efficient, self‐illuminating fusion protein combining a mutant red fluorescent protein (mOrange) and a mutant Renilla reniformis luciferase (RLuc8). This new BRET fusion protein (BRET3) exhibits severalfold improvement in light intensity in comparison with existing BRET fusion proteins. BRET3 also exhibits the most red‐shifted light output (564‐nm peak wavelength) of any reported bioluminescent protein that utilizes its natural substrate coelenterazine, a benefit of which is demonstrated at various tissue depths in small animals. The imaging utility of BRET3 at the single‐cell level is demonstrated using an intramolecular sensor incorporating two mammalian target of rapamycin pathway proteins (FKBP12 and FRB) that dimerize only in the presence of rapamycin. With its increased photon intensity, red‐shifted light output, and good spectral resolution (~85 nm), BRET3 shows improved spatial and temporal resolution for measuring intracellular events in single cells and in living small animal models. The development of further BRET3‐based assays will allow imaging of protein‐protein interactions using a single assay directly scalable from intact living cells to small living subjects, allowing accelerated drug discovery.— De, A.,Ray, P., Loening, A. M., Gambhir, S. S. BRET3: a red‐shifted bioluminescence resonance energy transfer (BRET) based integrated platform for imaging protein‐protein interactions from single live cells and living animals. FASEBJ. 23, 2702–2709 (2009)
Journal of Orthopaedic Research | 2009
Sheen-Woo Lee; Parasuraman Padmanabhan; Pritha Ray; Sanjiv S. Gambhir; Timothy C. Doyle; Christopher H. Contag; Stuart B. Goodman; Sandip Biswal
Adult stem cells are promising therapeutic reagents for skeletal regeneration. We hope to validate by molecular imaging technologies the in vivo life cycle of adipose‐derived multipotent cells (ADMCs) in an animal model of skeletal injury. Primary ADMCs were lentivirally transfected with a fusion reporter gene and injected intravenously into mice with bone injury or sham operation. Bioluminescence imaging (BLI), [18F]FHBG (9‐(fluoro‐hydroxy‐methyl‐butyl‐guanine)‐micro‐PET, [18F]Fluoride ion micro‐PET and micro‐CT were performed to monitor stem cells and their effect. Bioluminescence microscopy and immunohistochemistry were done for histological confirmation. BLI showed ADMCs traffic from the lungs then to the injury site. BLI microscopy and immunohistochemistry confirmed the ADMCs in the bone defect. Micro‐CT measurements showed increased bone healing in the cell‐injected group compared to the noninjected group at postoperative day 7 (p < 0.05). Systemically administered ADMCs traffic to the site of skeletal injury and facilitate bone healing, as demonstrated by molecular and small animal imaging. Molecular imaging technologies can validate the usage of adult adipose tissue‐derived multipotent cells to promote fracture healing. Imaging can in the future help establish therapeutic strategies including dosage and administration route.
Radiology | 2011
Amelie M. Lutz; Jürgen K. Willmann; Charles W. Drescher; Pritha Ray; Frank V. Cochran; Nicole Urban; Sanjiv S. Gambhir
UNLABELLED Ovarian cancer is the most lethal of the gynecologic malignancies. Because ovarian cancer symptoms are subtle and nonspecific, the diagnosis is often delayed until the disease is well advanced. Overall 5-year survival is a rather dismal 50% but can be improved to greater than 90% if the disease is confined to the ovary at the time of diagnosis (generally in fewer than 25% of patients). Effective screening tools are currently not available. Owing to the rather low incidence of the disease in the general population, potential screening tests must provide very high specificity to avoid unnecessary interventions in false-positive cases. This article reviews currently available serum biomarkers and imaging tests for the early detection of ovarian cancer and provides an outlook on the potential improvements in these noninvasive diagnostic tools that may lead to successful implementation in a screening program. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11090563/-/DC1.
Clinical Cancer Research | 2008
Pritha Ray; Abhijit De; Manishkumar Patel; Sanjiv S. Gambhir
Purpose: Capsase-3 plays an important role in chemotherapy-induced apoptosis in many cancers. Herein, we applied a multimodality reporter vector to monitor caspase-3 activation indirectly in live cells and tumors of living animals undergoing apoptosis. Experimental Design: A fusion protein (MTF) was constructed by combining three different reporter proteins, red fluorescent protein (mRFP1), firefly luciferase (FL), and HSV1-sr39 truncated thymidine kinase (TK), linked through a caspase-3 recognizable polypeptide linker. After cleavage by caspase-3, a significant gain in mRFP1, FL, and TK activity are observed by fluorescence-activated cell sorting and enzyme-based assays. A melanoma cell line (B16F10-mtf-hrl) stably expressing mtf (to measure caspase-3 activation) and hrl-IRES-gfp (to determine the decrease in a number of viable cells) vectors was generated to measure two independent molecular events upon treatment. Results: Upon induction with 8 μmol/L staurosporine, the fusion protein showed a 2.8-fold increase in FL (P = 0.03), a 1.5-fold increase in TK (P = not significant), and a 2-fold increase in mRFP1 (P = 0.05) activity in 293T cells. Bioluminescence and micropositron emission tomography imaging of the apoptotic B16F10-mtf-hrl tumors showed a 2-fold higher FL activity (897 versus 416) and a 2-fold higher TK activity (10.3 versus 3.87) than control tumors when normalized with RL activity. Using a similar normalization approach, the time kinetics of caspase-3 activation by two protein kinase-C inhibitors was noninvasively monitored in living mice. Conclusion: This multimodality caspase sensor vector could effectively and noninvasively monitor caspase-3 activation from single live cells to a multicellular tumor environment and, thus, would be a valuable tool for drug screening in preclinical models and future patient cell based therapy.
Cancer Letters | 2014
Ram K. Singh; Snehal M. Gaikwad; Ankit Jinager; Smrita Chaudhury; Amita Maheshwari; Pritha Ray
The kinetics and effect of hyper activated IGF-1R signaling is not well investigated during acquirement of platinum and taxol resistance in ovarian cancer cells. Herein we reported an upregulated IGF-1R expression in early stages of cisplatin paclitaxel and cisplatin-taxol resistance. Picropodophyllin, an IGF-1R inhibitor, alone and in combination with cisplatin, paclitaxel or both at lowest possible doses could reverse the resistance at early stages. Upregulated IGF-1R was also found in primary tumors of ovarian cancer patients after three to four cycles of platinum-taxol treatment. These findings indicate that a combination of cytotoxic agents and IGF-1R inhibitor is more effective at early stages of chemoresistant ovarian cancer.
Journal of Biomedical Optics | 2007
Shahriar S. Yaghoubi; Remi Creusot; Pritha Ray; C. Garrison Fathman; Sanjiv S. Gambhir
Appropriate targeting of therapeutic cells is essential in adoptive cellular gene therapy (ACGT). Imaging cell trafficking in animal models and patients will guide development of ACGT protocols. Collagen type II (C-II)-specific T cell hybridomas are transduced with a lentivirus carrying a triple fusion reporter gene (TFR) construct consisting of a fluorescent reporter gene (RG), a bioluminescent RG (hRluc), and a positron emission tomography (PET) RG. Collagen-induced arthritic (CIA) mice are scanned with a bioluminescence imaging camera before and after implantation of various known cell quantities in their paws. Linear regression analysis yields equations relating two parameters of image signal intensity in mice paws to the quantity of hRluc expressing cells in the paws. Afterward, trafficking of intravenously injected cells is studied by quantitative analysis of bioluminescence images. Comparison of the average cell numbers does not demonstrate consistently higher accumulation of T-cell hybridomas in the paws with higher inflammation scores, and injecting more cells does not cause increased accumulation. MicroPET images illustrate above background signal in the inflamed paws and chest areas of CIA mice. The procedures described in this study can be used to derive equations for cells expressing other bioluminescent RGs and in other animal models.
Molecular Imaging | 2007
Ivana K. Cecic; Denise A. Chan; Patrick D. Sutphin; Pritha Ray; Sanjiv S. Gambhir; Amato J. Giaccia; Edward E. Graves
Reporter gene techniques have been applied toward studying the physiologic phenomena associated with tumor hypoxia, a negative prognostic indicator. The purpose of this study was to assess the potential adverse effects of hypoxic conditions on the effectiveness of four commonly used reporter genes: Renilla luciferase, monomeric red fluorescent protein, thymidine kinase, and lacZ. Tumor-forming A375 cells expressing a trifusion reporter consisting of Renilla luciferase, monomeric red fluorescent protein, and thymidine kinase were subjected to decreasing oxygen tensions and assayed for reporter expression and activity. A375 cells expressing β-galactosidase were similarly exposed to hypoxia, with activity of the reporter monitored by cleavage of the fluorescent substrate 7-hydroxy-9H-(1, 3-dichloro-9, 9-dimethylacridin-2-one)-β-galactoside (DDAOG). Generation of signal in in vivo tumor models expressing bioluminescent or β-galactosidase reporters were also examined over the course of hypoxic stresses, either by tumor clamping or the antivascular agent 5, 6-dimethylxanthenone-4-acetic acid (DMXAA). Our findings indicate that bioluminescent and fluorescent reporter activity are decreased under hypoxia despite minimal variations in protein production, whereas β-galactosidase reporter activity per unit protein was unchanged. These results demonstrate that combining β-galactosidase with the DDAOG optical probe may be a robust reporter system for the in vivo study of tumor hypoxia.