Prithwiraj Byabartta
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Prithwiraj Byabartta.
Journal of Chemical Sciences | 2006
Prithwiraj Byabartta; Mariano Laguna
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.
Russian Journal of Inorganic Chemistry | 2010
Prithwiraj Byabartta
Reaction of [Pd(dppe)Cl2/Br2] with AgOTf in a dichloromethane medium followed by ligand addition led to [Pd(dppe)(OSO2CF3)2] and then [Pd(dppe)(RaaiR)](OSO2CF3)2 [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (1–3), abbreviated as a N,N′-chelator, where N(imidazole) and N(azo) are represented by N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), OSO2CF3 is the triflate anion, dppe = 1,2-bis-(diphenylphosphinoethane)]. 31P “1H” NMR confirmed that due to the two phosphorus atom interaction in the azoimine symmetrical environment one sharp peak was formed. The 1H NMR spectral measurements suggest that azo-imine link with lot of phenyl protons in the aromatic region. 13C (1H) NMR spectrum, 1H, 1H COSY and 1H, 13C HMQC spectrum assign the solution structure and stereo-retentive conformation in each complex.
Russian Journal of General Chemistry | 2009
Prithwiraj Byabartta
The reaction of [Ni(dppa)(Cl)2] or [Ni(dppa)(Br)2] with AgOTf gives [Ni(dppa)(OTf)2], which then form [Ni(dppa)(RaaiR)](OSO2CF3)2 under the action of arylazoimidazole(RaaiR) in a dichloromethane medium [RaaiR′ = p-R-C6H4-N=N-C3H2-NN-1-R′, (I–III), abbreviated as N,N′-chelating agent, where N(imidazole) and N(azo) represent N and N’, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (I), CH2CH3 (II), CH2Ph (III), OSO2CF3 is the triflate anion]. The 1H NMR spectral measurements suggest that a bound azoimine is responsible for a number of signals of phenyl protons in the aromatic region. The molecules of the complexes contain a number of different carbon atoms which gives a number of different peaks in the 13C (1H) NMR spectrum. The text was submitted by the author in English.
The Journal of Applied Sciences Research | 2014
Prithwiraj Byabartta
Transition Metal Chemistry | 2007
Prithwiraj Byabartta; Mariano Laguna
Transition Metal Chemistry | 2007
Prithwiraj Byabartta
Dyes and Pigments | 2007
Prithwiraj Byabartta
Transition Metal Chemistry | 2007
Prithwiraj Byabartta
Transition Metal Chemistry | 2007
Prithwiraj Byabartta
Transition Metal Chemistry | 2007
Prithwiraj Byabartta