Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Priti Prasanna Maity is active.

Publication


Featured researches published by Priti Prasanna Maity.


Ultrasonics Sonochemistry | 2018

Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release

Sayan Ganguly; Debes Ray; Poushali Das; Priti Prasanna Maity; Subhadip Mondal; V. K. Aswal; Santanu Dhara; Narayan Ch. Das

Nanohybrid hydrogels based on pristine graphene with enhanced toughness and dual responsive drug delivery feature is opening a new era for smart materials. Here pristine graphene hydrogels are synthesized by in situ free radical polymerization where graphene platelets are the nanobuiliding blocks to withstand external stress and shows reversible ductility. Such uniqueness is a mere reflection of rubber-like elasticity on the hydrogels. These nanobuilding blocks serve also the extensive physisorption which enhances the physical crosslinking inside the gel matrix. Besides the pH-responsive drug release features, these hydrogels are also implemented as a pulsatile drug delivery device. The electric responsive drug release behaviours are noticed and hypothesized by the formation of conducting network in the polyelectrolytic hydrogel matrix. The hydrogels are also tested as good biocompatibility and feasible cell-attachment during live-dead cell adhesion study. The drug release characteristics can also be tuned by adjusting the conducting filler loading into the gel matrix. As of our knowledge, this type of hydrogels with rubber-like consistency, high mechanical property, tunable and dual responsive drug delivery feature and very good human cell compatible is the first to report.


Materials Science and Engineering: C | 2017

Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds

Kamakshi Bankoti; Arun Prabhu Rameshbabu; Sayanti Datta; Priti Prasanna Maity; Piyali Goswami; Pallab Datta; Sudip K. Ghosh; Analava Mitra; Santanu Dhara

Wound healing is a dynamic process wherein cells, and macromolecules work in consonance to facilitate tissue regeneration and restore tissue integrity. In the case of full-thickness (FT) wounds, healing requires additional support from native or synthetic matrices to aid tissue regeneration. In particular, a matrix with optimum hydrophilic-hydrophobic balance which will undergo adequate swelling as well as reduce bacterial adhesion has remained elusive. In the present study, polyurethane diol dispersion (PUD) and the anti-bacterial chitosan (Chn) were blended in different ratios which self-organized to form macroporous hydrogel scaffolds (MHS) at room temperature on drying. SEM and AFM micrographs revealed the macroporosity on top and fracture surfaces of the MHS. FTIR spectra revealed the intermolecular as well as intra-molecular hydrogen bonding interactions between the two polymers responsible for phase separation, which was also observed by micrographs of blend solutions during the drying process. The effect of phase separation on mechanical properties and in vitro degradation (hydrolytic, enzymatic and pH dependent) of MHS were studied and found to be suitable for wound healing. In vitro cytocompatibility was demonstrated by the proliferation of primary rat fibroblast cells on MHS. Selected MHS was subjected to in vivo FT wound healing study in Wistar rats and compared with an analogous polyurethane containing commercial dressing i.e. Tegaderm™. The MHS-treated wounds demonstrated accelerated healing with increased wound contraction, higher collagen synthesis, and vascularization in wound area compared to Tegaderm™. Thus, it is concluded that the developed MHS is a promising candidate for application as FT wound healing dressings.


Micron | 2013

Finding an optimum immuno-histochemical feature set to distinguish benign phyllodes from fibroadenoma.

Priti Prasanna Maity; Subhamoy Chatterjee; Raunak Kumar Das; Subhalaxmi Mukhopadhyay; Ashok K Maity; Dhrubajyoti Maulik; Ajoy Kumar Ray; Santanu Dhara; Jyotirmoy Chatterjee

PURPOSE Benign phyllodes and fibroadenoma are two well-known breast tumors with remarkable diagnostic ambiguity. The present study is aimed at determining an optimum set of immuno-histochemical features to distinguish them by analyzing important observations on expressions of important genes in fibro-glandular tissue. METHODS Immuno-histochemically, the expressions of p63 and α-SMA in myoepithelial cells and collagen I, III and CD105 in stroma of tumors and their normal counterpart were studied. Semi-quantified features were analyzed primarily by ANOVA and ranked through F-scores for understanding relative importance of group of features in discriminating three classes followed by reduction in F-score arranged feature space dimension and application of inter-class Bhattacharyya distances to distinguish tumors with an optimum set of features. RESULTS Among thirteen studied features except one all differed significantly in three study classes. F-Ranking of features revealed highest discriminative potential of collagen III (initial region). F-Score arranged feature space dimension and application of Bhattacharyya distance gave rise to a feature set of lower dimension which can discriminate benign phyllodes and fibroadenoma effectively. CONCLUSIONS The work definitely separated normal breast, fibroadenoma and benign phyllodes, through an optimal set of immuno-histochemical features which are not only useful to address diagnostic ambiguity of the tumors but also to spell about malignant potentiality.


ACS Applied Materials & Interfaces | 2017

Influence of Porosity and Pore-Size Distribution in Ti6Al4 V Foam on Physicomechanical Properties, Osteogenesis, and Quantitative Validation of Bone Ingrowth by Micro-Computed Tomography

Kausik Kapat; Pavan Kumar Srivas; Arun Prabhu Rameshbabu; Priti Prasanna Maity; Subhodeep Jana; Joy Dutta; Pallab Majumdar; D. Chakrabarti; Santanu Dhara

Cementless fixation for orthopedic implants aims to obviate challenges associated with bone cement, providing long-term stability of bone prostheses after implantation. The application of porous titanium and its alloy-based implants is emerging for load-bearing applications due to their high specific strength, low stiffness, corrosion resistance, and superior osteoconductivity. In this study, coagulant-assisted foaming was utilized for the fabrication of porous Ti6Al4 V using egg-white foam. Samples with three different porosities of 68.3%, 75.4%, and 83.1% and average pore sizes of 92, 178, and 297 μm, respectively, were prepared and subsequently characterized for mechanical properties, osteogenesis, and tissue ingrowth. A microstructure-mechanical properties relationship study revealed that an increase of porosity from 68.3 to 83.1% increased the average pore size from 92 to 297 μm with the subsequent reduction of compresive strength by 85% and modulus by 90%. Samples with 75.4% porosity and a 178 μm average pore size produced signifcant osteogenic effects on human mesenchymal stem cells, which was further supported by immunocytochemistry and real-time polymerase chain reaction data. Quantitative assessment of bone ingrowth by micro-computed tomography revealed that there was an approximately 52% higher bone formation and more than 90% higher bone penetration at the center of femoral defects in rabbit when implanted with Ti6Al4 V foam (75.4% porosity) compared to the empty defects after 12 weeks. Hematoxylin and eosin (H&E) and Masson trichrome (MT) staining along with energy-dispersive X-ray mapping on the sections obtained from the retrieved bone samples support bone ingrowth into the implanted region.


ACS Applied Materials & Interfaces | 2018

Silk Sponges Ornamented with a Placenta-Derived Extracellular Matrix Augment Full-Thickness Cutaneous Wound Healing by Stimulating Neovascularization and Cellular Migration

Arun Prabhu Rameshbabu; Kamakshi Bankoti; Sayanti Datta; Elavarasan Subramani; Anupam Apoorva; Paulomi Ghosh; Priti Prasanna Maity; Padmavati Manchikanti; Koel Chaudhury; Santanu Dhara

Regeneration of full-thickness wounds without scar formation is a multifaceted process, which depends on in situ dynamic interactions between the tissue-engineered skin substitutes and a newly formed reparative tissue. However, the majority of the tissue-engineered skin substitutes used so far in full-thickness wound healing cannot mimic the natural extracellular matrix (ECM) complexity and thus are incapable of providing a suitable niche for endogenous tissue repair. Herein, we demonstrated a simple approach to fabricate porous hybrid ECM sponges (HEMS) using a placental ECM and silk fibroin for full-thickness wound healing. HEMS with retained cytokines/growth factors provided a noncytotoxic environment in vitro for human foreskin fibroblasts (HFFs), human epidermal keratinocytes (HEKs), and human amniotic membrane-derived stem cells to adhere, infiltrate, and proliferate. Interestingly, HEMS-conditioned media accelerated the migration of HFFs and HEKs owing to the presence of cytokines/growth factors. Also, the ex vivo chick chorioallantoic membrane assay of HEMS demonstrated its excellent vascularization potential by inducing and supporting blood vessels. Additionally, HEMS when subcutaneously implanted demonstrated no severe immune response to the host. Furthermore, HEMS implanted in full-thickness wounds in a rat model showed augmented healing progression with well-organized epidermal-dermal junctions via pronounced angiogenesis, accelerated migration of HFFs/HEKs, enhanced granulation tissue formation, and early re-epithelialization. Taken together, these findings show that porous HEMS ornamented with cytokines/growth factors having superior physicomechanical properties may be an appropriate skin substitute for full-thickness cutaneous wounds.


Materials Science and Engineering: C | 2018

Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric biocompatible semi-IPN hydrogel for controlled drug delivery

Sayan Ganguly; Priti Prasanna Maity; Subhadip Mondal; Poushali Das; Poushali Bhawal; Santanu Dhara; Narayan Ch. Das

Nanoparticles embedded semi-interpenetrating (semi-IPNs) polymeric hydrogels with enhanced mechanical toughness and biocompatibility could have splendid biomedical acceptance. Here we propose poly(methacrylic acid) grafted polysaccharide based semi-IPNs filled with nanoclay via in situ Michael type reaction associated with covalent crosslinking with N,N-methylenebisacrylamide (MBA). The effect of nanoclay in the semi-IPN hydrogel has been investigated which showed significant improvement of mechanical robustness. Meanwhile, the hydrogels showed reversible ductility up to 70% in response to cyclic loading-unloading cycle which is an obvious phenomenon of rubber-like elasticity. The synthesized semi-IPN hydrogel show biodegradability and non-cytotoxic nature against human cells. The live-dead assay showed that the prepared hydrogel is a viable platform for cell growth without causing severe cell death. The in vitro drug release study in psychological pH (pH = 7.4) reveals that the controlled drug release phenomena can be tuned by simulating the environment pH. Such features in a single hydrogel assembly can propose this as high performance; biodegradable and non-cytotoxic 3D scaffold based promising biomaterial for tissue engineering.


Luminescence | 2018

Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UV-active marker and fluorescent polymer composite

Poushali Das; Sayan Ganguly; Subhadip Mondal; Uttam Kumar Ghorai; Priti Prasanna Maity; Sumita Choudhary; Subhashis Gangopadhyay; Santanu Dhara; Susanta Banerjee; Narayan Ch. Das

We report on metal-non-metal doped carbon dots with very high photoluminescent properties in solution. Magnesium doping to tamarind extract associated with nitrogen-doping is for the first time reported here which also produce very high quantum yield. Our aim is to develop such dual doped carbon dots which can also serve living cell imaging with easy permeation towards cells and show non-cytotoxic attributes. More importantly, the chemical signatures of the carbon dots unveiled in this work can support their easy solubilization into water; even in sub-ambient temperature. The cytotoxicity assay proves the almost negligible cytotoxic effect against human cell lines. Moreover, the use of carbon dots in UV-active marker and polymer composites are also performed which gave clear distinguishable features of fluorescent nanoparticles. Hitherto, the carbon dots can be commercially prepared without adopting any rigorous methods and also can be used as non-photo-bleachable biomarkers of living cells.


Journal of Physical Chemistry B | 2018

Green Reduced Graphene Oxide Toughened Semi-IPN Monolith Hydrogel as Dual Responsive Drug Release System: Rheological, Physicomechanical, and Electrical Evaluations

Sayan Ganguly; Poushali Das; Priti Prasanna Maity; Subhadip Mondal; Sabyasachi Ghosh; Santanu Dhara; Narayan Chandra Das

Macroporous hydrogel monoliths having tailor-made features, conductivity, superstretchability, excellent biocompatibility, and biodegradability, have become the most nurtured field of interest in soft biomaterials. Green method assisted reduced graphene oxide has been inserted by in situ free radical gelation into semi-IPN hydrogel matrix to fabricate conducting hydrogel. Mechanical toughness has been implemented for the graphene-polymer physisorption interactions with graphene basal planes. Moreover, the as-prepared 3D scaffold type monolith hydrogel has been rheologically superior regarding their high elastic modulus and delayed gel rupturing. κ-Carragenaan, one of the components of the hydrogel, has biodegradable nature. The most significant outcome is their low electrical percolation threshold and reversibly ductile nature. Reversible ductility provides them with rubber-like consistency in flow conditions. Surprising, the hydrogels showed dual stimuli-responsiveness, that is, environmental pH and external electrical stimulation. Electro-stimulation has been adopted here for the first time in semi-IPN systems, which could be an ideal alternative for iontopheretic devices and pulsatile drug release through skin. Regarding this, the hydrogel also has been passed to biocompatibility assay; they are noncytotoxic and show cell proliferation without negligible cell death in live-dead assay. The porosity of the nanocomposite scaffold-like gels was also analyzed by microcomputed tomography (μ-CT), which exhibited their connectivity in cell/voids inside the matrix. Thus, the experimentations are on the support of biocompatible soft material for dual-responsive tunable drug delivery.


Bioengineering | 2018

Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications

Trina Roy; Priti Prasanna Maity; Arun Prabhu Rameshbabu; Bodhisatwa Das; Athira John; Abir Dutta; Sanjoy Kumar Ghorai; Santanu Chattopadhyay; Santanu Dhara

The vast domain of regenerative medicine comprises complex interactions between specific cells’ extracellular matrix (ECM) towards intracellular matrix formation, its secretion, and modulation of tissue as a whole. In this domain, engineering scaffold utilizing biomaterials along with cells towards formation of living tissues is of immense importance especially for bridging the existing gap of late; nanostructures are offering promising capability of mechano-biological response needed for tissue regeneration. Materials are selected for scaffold fabrication by considering both the mechanical integrity and bioactivity cues they offer. Herein, polycaprolactone (PCL) (biodegradable polyester) and ‘nature’s wonder’ biopolymer silk fibroin (SF) are explored in judicious combinations of emulsion electrospinning rather than conventional electrospinning of polymer blends. The water in oil (W/O) emulsions’ stability is found to be dependent upon the concentration of SF (aqueous phase) dispersed in the PCL solution (organic continuous phase). The spinnability of the emulsions is more dependent upon the viscosity of the solution, dominated by the molecular weight of PCL and its concentration than the conductivity. The nanofibers exhibited distinct core-shell structure with better cytocompatibility and cellular growth with the incorporation of the silk fibroin biopolymer.


Journal of Photochemistry and Photobiology B-biology | 2018

Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity

Poushali Das; Sayan Ganguly; Priti Prasanna Maity; Madhuparna Bose; Subhadip Mondal; Santanu Dhara; Amit Kumar Das; Susanta Banerjee; Narayan Ch. Das

Collaboration


Dive into the Priti Prasanna Maity's collaboration.

Top Co-Authors

Avatar

Santanu Dhara

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Poushali Das

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sayan Ganguly

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Subhadip Mondal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Arun Prabhu Rameshbabu

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Narayan Ch. Das

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Kamakshi Bankoti

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sayanti Datta

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Poushali Bhawal

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Sabyasachi Ghosh

Indian Institute of Technology Kharagpur

View shared research outputs
Researchain Logo
Decentralizing Knowledge