Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Priya DasSarma is active.

Publication


Featured researches published by Priya DasSarma.


Saline Systems | 2007

Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature

James A Coker; Priya DasSarma; Jeffrey Kumar; Jochen A Müller; Shiladitya DasSarma

BackgroundThe model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation.ResultsIn order to study the response of Halobacterium sp. NRC-1 to two common stressors, salinity and temperature, we used whole genome DNA microarrays to assay for changes in gene expression under differential growth conditions. Cultures grown aerobically in rich medium at 42°C were compared to cultures grown at elevated or reduced temperature and high or low salinity. The results obtained were analyzed using a custom database and microarray analysis tools. Growth under salt stress conditions resulted in the modulation of genes coding for many ion transporters, including potassium, phosphate, and iron transporters, as well as some peptide transporters and stress proteins. Growth at cold temperature altered the expression of genes involved in lipid metabolism, buoyant gas vesicles, and cold shock proteins. Heat shock showed induction of several known chaperone genes. The results showed that Halobacterium sp. NRC-1 cells are highly responsive to environmental changes at the level of gene expression.ConclusionTranscriptional profiling showed that Halobacterium sp. NRC-1 is highly responsive to its environment and provided insights into some of the specific responses at the level of gene expression. Responses to changes in salt conditions appear to be designed to minimize the loss of essential ionic species and abate possible toxic effects of others, while exposure to temperature extremes elicit responses to promote protein folding and limit factors responsible for growth inhibition. This work lays the foundation for further bioinformatic and genetic studies which will lead to a more comprehensive understanding of the biology of a model halophilic Archaeon.


BMC Genetics | 2007

Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1

Brian R Berquist; Priya DasSarma; Shiladitya DasSarma

BackgroundInformation transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential.ResultsUsing a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene.ConclusionThe results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Detection of circular polarization in light scattered from photosynthetic microbes

W. B. Sparks; J. Hough; Thomas A. Germer; Feng Chen; Shiladitya DasSarma; Priya DasSarma; Frank T. Robb; Nadine Manset; Ludmilla Kolokolova; N. Reid; F.D. Macchetto; W. Martin

The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.


BMC Biotechnology | 2013

Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi

Ram Karan; Melinda D Capes; Priya DasSarma; Shiladitya DasSarma

BackgroundHalorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures.ResultsAnalysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol.ConclusionThe H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.


Current Opinion in Microbiology | 2015

Halophiles and their enzymes: negativity put to good use

Shiladitya DasSarma; Priya DasSarma

Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. Recent efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered.


Saline Systems | 2008

Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1.

Ivan Boubriak; Wooi Loon Ng; Priya DasSarma; Shiladitya DasSarma; David J. Crowley; Shirley McCready

BackgroundMost studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earths surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to low doses of mid-wave UV (UV-B) to assess its response to UV radiation that is likely to be more biologically relevant.ResultsHalobacterium NRC-1 cells were irradiated with UV-B at doses equivalent to 30 J/m2 and 5 J/m2 of UV-C. Transcriptional profiling showed that only 11 genes were up-regulated 1.5-fold or more by both UV-B doses. The most strongly up-regulated gene was radA1 (vng2473), the archaeal homologue of RAD51/recA recombinase. The others included arj1 (vng779) (recJ-like exonuclease), top6A (vng884) and top6B (vng885) (coding for Topoisomerase VI subunits), and nrdJ (vng1644) (which encodes a subunit of ribonucleotide reductase). We have found that four of the consistently UV-B up-regulated genes, radA1 (vng2473), vng17, top6B (vng885) and vng280, share a common 11-base pair motif in their promoter region, TTTCACTTTCA. Similar sequences were found in radA promoters in other halophilic archaea, as well as in the radA promoter of Methanospirillum hungatei. We analysed the transcriptional response of a repair-deficient ΔuvrA (vng2636) ΔuvrC (vng2381) double-deletion mutant and found common themes between it and the response in repair proficient cells.ConclusionOur results show a core set of genes is consistently up-regulated after exposure to UV-B light at low, biologically relevant doses. Eleven genes were up-regulated, in wild-type cells, after two UV-B doses (comparable to UV-C doses of 30 J/m2 and 5 J/m2), and only four genes were up-regulated by all doses of UV-B and UV-C that we have used in this work and previously. These results suggest that high doses of UV-C radiation do not necessarily provide a good model for the natural response to environmental UV. We have found an 11-base pair motif upstream of the TATA box in four of the UV-B up-regulated genes and suggest that this motif is the binding site for a transcriptional regulator involved in their response to UV damage in this model archaeon.


Saline Systems | 2006

Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1

Shiladitya DasSarma; Brian R Berquist; James A Coker; Priya DasSarma; Jochen A Müller

Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.


PLOS ONE | 2013

Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from antarctica.

Shiladitya DasSarma; Melinda D Capes; Ram Karan; Priya DasSarma

The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.


Plasmid | 2011

The information transfer system of halophilic archaea.

Melinda D Capes; James A. Coker; Rachael Gessler; Valerie Grinblat-Huse; Satyajit L. DasSarma; Christopher G. Jacob; Jong-Myoung Kim; Priya DasSarma; Shiladitya DasSarma

Information transfer is fundamental to all life forms. In the third domain of life, the archaea, many of the genes functioning in these processes are similar to their eukaryotic counterparts, including DNA replication and repair, basal transcription, and translation genes, while many transcriptional regulators and the overall genome structure are more bacterial-like. Among halophilic (salt-loving) archaea, the genomes commonly include extrachromosomal elements, many of which are large megaplasmids or minichromosomes. With the sequencing of genomes representing ten different genera of halophilic archaea and the availability of genetic systems in two diverse models, Halobacterium sp. NRC-1 and Haloferax volcanii, a large number of genes have now been annotated, classified, and studied. Here, we review the comparative genomic, genetic, and biochemical work primarily aimed at the information transfer system of halophilic archaea, highlighting gene conservation and differences in the chromosomes and the large extrachromosomal elements among these organisms.


BMC Genomics | 2012

The core and unique proteins of haloarchaea

Melinda D Capes; Priya DasSarma; Shiladitya DasSarma

BackgroundSince the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity, desiccation, and high solar radiation. However, few previous attempts have been made to identify novel genes that would permit survival in such extreme conditions.ResultsWith the recent release of several new complete haloarchaeal genome sequences, we have conducted a comprehensive comparative genomic analysis focusing on the identification of unique haloarchaeal conserved proteins that likely play key roles in environmental adaptation. Using bioinformatic methods, we have clustered 31,312 predicted proteins from nine haloarchaeal genomes into 4,455 haloarchaeal orthologous groups (HOGs). We assigned likely functions by association with established COG and KOG databases in NCBI. After identifying homologs in four additional haloarchaeal genomes, we determined that there were 784 core haloarchaeal protein clusters (cHOGs), of which 83 clusters were found primarily in haloarchaea. Further analysis found that 55 clusters were truly unique (tucHOGs) to haloarchaea and qualify as signature proteins while 28 were nearly unique (nucHOGs), the vast majority of which were coded for on the haloarchaeal chromosomes. Of the signature proteins, only one example with any predicted function, Ral, involved in desiccation/radiation tolerance in Halobacterium sp. NRC-1, was identified. Among the core clusters, 33% was predicted to function in metabolism, 25% in information transfer and storage, 10% in cell processes and signaling, and 22% belong to poorly characterized or general function groups.ConclusionOur studies have established conserved groups of nearly 800 protein clusters present in all haloarchaea, with a subset of 55 which are predicted to be accessory proteins that may be critical or essential for success in an extreme environment. These studies support core and signature genes and proteins as valuable concepts for understanding phylogenetic and phenotypic characteristics of coherent groups of organisms.

Collaboration


Dive into the Priya DasSarma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ram Karan

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Germer

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

W. B. Sparks

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Hough

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar

Nadine Manset

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

University of Maryland Biotechnology Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge