Priyabrata Panigrahi
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Priyabrata Panigrahi.
Enzyme and Microbial Technology | 2014
Ruchira Mukherji; Nishant Kumar Varshney; Priyabrata Panigrahi; C. G. Suresh; Asmita Prabhune
Use of penicillin acylases for the production of semi-synthetic penicillins is well-known. Escherichia coli penicillin G acylase (EcPGA) has been extensively used for this purpose; however, Kluyvera citrophila penicillin G acylase (KcPGA) is assumed to be a better substitute, owing to its increased resilience to extreme pH conditions and ease of immobilization. In the present article we report a new dimension for the amidase activity of KcPGA by demonstrating its ability to cleave bacterial quorum sensing signal molecules, acyl homoserine lactones (AHL) with acyl chain length of 6-8 with or without oxo-substitution at third carbon position. Initial evidence of AHL degrading capability of KcPGA was obtained using CV026 based bioassay method. Kinetic studies performed at pH 8.0 and 50 °C revealed 3-oxo-C6 HSL to be the best substrate for the enzyme with V(max) and K(m) values of 21.37+0.85 mM/h/mg of protein and 0.1+0.01 mM, respectively. C6 HSL was found to be the second best substrate with V(max) and K(m) value of 10.06+0.27 mM/h/mg of protein and 0.28+0.02 mM, respectively. Molecular modeling and docking studies performed on the active site of the enzyme support these findings by showing the fitting of AHLs perfectly within the hydrophobic pocket of the enzyme active site.
PLOS ONE | 2015
Priyabrata Panigrahi; Manas Sule; Avinash D. Ghanate; Sureshkumar Ramasamy; C. G. Suresh
Engineering protein molecules with desired structure and biological functions has been an elusive goal. Development of industrially viable proteins with improved properties such as stability, catalytic activity and altered specificity by modifying the structure of an existing protein has widely been targeted through rational protein engineering. Although a range of factors contributing to thermal stability have been identified and widely researched, the in silico implementation of these as strategies directed towards enhancement of protein stability has not yet been explored extensively. A wide range of structural analysis tools is currently available for in silico protein engineering. However these tools concentrate on only a limited number of factors or individual protein structures, resulting in cumbersome and time-consuming analysis. The iRDP web server presented here provides a unified platform comprising of iCAPS, iStability and iMutants modules. Each module addresses different facets of effective rational engineering of proteins aiming towards enhanced stability. While iCAPS aids in selection of target protein based on factors contributing to structural stability, iStability uniquely offers in silico implementation of known thermostabilization strategies in proteins for identification and stability prediction of potential stabilizing mutation sites. iMutants aims to assess mutants based on changes in local interaction network and degree of residue conservation at the mutation sites. Each module was validated using an extensively diverse dataset. The server is freely accessible at http://irdp.ncl.res.in and has no login requirements.
Microbiology | 2014
Priyabrata Panigrahi; Manas Sule; Ranu Sharma; Sureshkumar Ramasamy; C. G. Suresh
Bile salt hydrolases (BSHs) are gut microbial enzymes that play a significant role in the bile acid modification pathway. Penicillin V acylases (PVAs) are enzymes produced by environmental microbes, having a possible role in pathogenesis or scavenging of phenolic compounds in their microbial habitats. The correct annotation of such physiologically and industrially important enzymes is thus vital. The current methods relying solely on sequence homology do not always provide accurate annotations for these two members of the cholylglycine hydrolase (CGH) family as BSH/PVA enzymes. Here, we present an improved method [binding site similarity (BSS)-based scoring system] for the correct annotation of the CGH family members as BSH/PVA enzymes, which along with the phylogenetic information incorporates the substrate specificity as well as the binding site information. The BSS scoring system was developed through the analysis of the binding sites and binding modes of the available BSH/PVA structures with substrates glycocholic acid and penicillin V. The 198 sequences in the dataset were then annotated accurately using BSS scores as BSH/PVA enzymes. The dataset presented contained sequences from Gram-positive bacteria, Gram-negative bacteria and archaea. The clustering obtained for the dataset using the method described above showed a clear distinction in annotation of Gram-positive bacteria and Gram-negative bacteria. Based on this clustering and a detailed analysis of the sequences of the CGH family in the dataset, we could infer that the CGH genes might have evolved in accordance with the hypothesis stating the evolution of diderms and archaea from the monoderms.
Plant Biotechnology Journal | 2016
Yashwant Kumar; Limin Zhang; Priyabrata Panigrahi; Bhushan B. Dholakia; Veena Dewangan; Sachin G. Chavan; Shrikant Kunjir; Xiangyu Wu; Ning Li; Pattuparambil R. Rajmohanan; Narendra Y. Kadoo; Ashok P. Giri; Huiru Tang; Vidya S. Gupta
Summary Molecular changes elicited by plants in response to fungal attack and how this affects plant–pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label‐free proteomics and NMR‐based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis‐related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plants role in chickpea–Foc interactions.
Phytochemistry | 2015
Yashwant Kumar; Bhushan B. Dholakia; Priyabrata Panigrahi; Narendra Y. Kadoo; Ashok P. Giri; Vidya S. Gupta
Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (Foc), is one of the major threats to global chickpea production. Host resistance is the best way to protect crops from diseases; however, in spite of using various approaches, the mechanism of Foc resistance in chickpea remains largely obscure. In the present study, non-targeted metabolic profiling at several time points of resistant and susceptible chickpea cultivars using high-resolution liquid chromatography-mass spectrometry was applied to better understand the mechanistic basis of wilt resistance or susceptibility. Multivariate analysis of the data (OPLS-DA) revealed discriminating metabolites in chickpea root tissue after Foc inoculation such as flavonoids, isoflavonoids, alkaloids, amino acids and sugars. Foc inoculated resistant plants had more flavonoids and isoflavonoids along with their malonyl conjugates. Many antifungal metabolites that were induced after Foc infection viz., aurantion-obstine β-glucosides and querecitin were elevated in resistant cultivar. Overall, diverse genetic and biochemical mechanisms were operational in the resistant cultivar for Foc defense as compared to the susceptible plant. The resistant chickpea plants employed the above-mentioned metabolic pathways as potential defense strategy against Foc.
Biochemical and Biophysical Research Communications | 2013
Vellore Sunder Avinash; Priyabrata Panigrahi; C. G. Suresh; Archana Pundle; Sureshkumar Ramasamy
Penicillin V acylases (PVAs) and bile salt hydrolases (BSHs) have considerable sequence and structural similarity; however, they vary significantly in their substrate specificity. We have identified a PVA from a Gram-negative organism, Pectobacterium atrosepticum (PaPVA) that turned out to be a remote homolog of the PVAs and BSHs reported earlier. Even though the active site residues were conserved in PaPVA it showed high specificity towards penV and interestingly the penV acylase activity was inhibited by bile salts. Comparative modelling and docking studies were carried out to understand the structural differences of the binding site that confer this characteristic property. We show that PaPVA exhibits significant differences in structure, which are in contrast to those of known PVAs and such enzymes from Gram-negative bacteria require further investigation.
PLOS ONE | 2014
Ranu Sharma; Priyabrata Panigrahi; C. G. Suresh
Flavonoids are a class of plant secondary metabolites that act as storage molecules, chemical messengers, as well as participate in homeostasis and defense processes. They possess pharmaceutical properties important for cancer treatment such as antioxidant and anti-tumor activities. The drug-related properties of flavonoids can be improved by glycosylation. The enzymes glycosyltransferases (GTs) glycosylate acceptor molecules in a regiospecific manner with the help of nucleotide sugar donor molecules. Several plant GTs have been characterized and their amino acid sequences determined. However, three-dimensional structures of only a few are reported. Here, phylogenetic analysis using amino acid sequences have identified a group of GTs with the same regiospecific activity. The structures of these closely related GTs were modeled using homologous GT structures. Their substrate binding sites were elaborated by docking flavonoid acceptor and UDP-sugar donor molecules in the modeled structures. Eight regions near the acceptor binding site in the N- and C- terminal domain of GTs have been identified that bind and specifically glycosylate the 3-OH group of acceptor flavonoids. Similarly, a conserved motif in the C-terminal domain is known to bind a sugar donor substrate. In certain GTs, the substitution of a specific glutamine by histidine in this domain changes the preference of sugar from glucose to galactose as a result of changed pattern of interactions. The molecular modeling, docking, and molecular dynamics simulation studies have revealed the chemical and topological features of the binding site and thus provided insights into the basis of acceptor and donor recognition by GTs.
Journal of Structural Biology | 2016
Vellore Sunder Avinash; Priyabrata Panigrahi; Deepak Chand; Archana Pundle; Cheravakattu Gopalan Suresh; Sureshkumar Ramasamy
Penicillin V acylases (PVA) catalyze the deacylation of the beta-lactam antibiotic phenoxymethylpenicillin (Pen V). They are members of the Ntn hydrolase family and possess an N-terminal cysteine as the main catalytic nucleophile residue. They form the evolutionarily related cholylglycine hydrolase (CGH) group which includes bile salt hydrolases (BSH) responsible for bile deconjugation. Even though a few PVA and BSH structures have been reported, no structure of a functional PVA from Gram-negative bacteria is available. Here, we report the crystal structure of a highly active PVA from Gram-negative Pectobacterium atrosepticum (PaPVA) at 2.5Å resolution. Structural comparison with PVAs from Gram-positive bacteria revealed that PaPVA had a distinctive tetrameric structure and active site organization. In addition, mutagenesis of key active site residues and biochemical characterization of the resultant variants elucidated the role of these residues in substrate binding and catalysis. The importance of residue Trp23 and Trp87 side chains in binding and correct positioning of Pen V by PVAs was confirmed using mutagenesis and substrate docking with a 15ns molecular dynamics simulation. These results establish the unique nature of Gram-negative CGHs and necessitate further research about their substrate spectrum.
Biochimica et Biophysica Acta | 2018
Deepak Chand; Priyabrata Panigrahi; Nishant Kumar Varshney; Sureshkumar Ramasamy; C. G. Suresh
Bile Salt Hydrolase (BSH), a member of Cholylglycine hydrolase family, catalyzes the de-conjugation of bile acids and is evolutionarily related to penicillin V acylase (PVA) that hydrolyses a different substrate such as penicillin V. We report the three-dimensional structure of a BSH enzyme from the Gram-positive bacteria Enterococcus faecalis (EfBSH) which has manifold higher hydrolase activity compared to other known BSHs and displays unique allosteric catalytic property. The structural analysis revealed reduced secondary structure content compared to other known BSH structures, particularly devoid of an anti-parallel β-sheet in the assembly loop and part of a β-strand is converted to increase the length of a substrate binding loop 2. The analysis of the substrate binding pocket showed reduced volume owing to altered loop conformations and increased hydrophobicity contributed by a higher ratio of hydrophobic to hydrophilic groups present. The aromatic residues F18, Y20 and F65 participate in substrate binding. Thus, their mutation affects enzyme activity. Docking and Molecular Dynamics simulation studies showed effective polar complementarity present for the three hydroxyl (-OH) groups of GCA substrate in the binding site contributing to higher substrate specificity and efficient catalysis. These are unique features characteristics of this BSH enzyme and thought to contribute to its higher activity and specificity towards bile salts as well as allosteric effects. Further, mechanism of autocatalytic processing of Cholylglycine Hydrolases by the excision of an N-terminal Pre-peptide was examined by inserting different N-terminal pre-peptides in EfBSH sequence. The results suggest that two serine residues next to nucleophile cysteine are essential for autocalytic processing to remove precursor peptide. Since pre-peptide is absent in EfBSH the mutation of these serines is tolerated. This suggests that an evolution-mediated subordination of the pre-peptide excision site resulted in loss of pre-peptide in EfBSH and other related Cholylglycine hydrolases.
Journal of Industrial Microbiology & Biotechnology | 2015
Priyabrata Panigrahi; Deepak Chand; Ruchira Mukherji; Sureshkumar Ramasamy; C. G. Suresh
Penicillin acylases are enzymes employed by the pharmaceutical industry for the manufacture of semi-synthetic penicillins. There is a continuous demand for thermostable and alkalophilic enzymes in such applications. We have carried out a computational analysis of known penicillin G acylases (PGAs) in terms of their thermostable nature using various protein-stabilizing factors. While the presence of disulfide bridges was considered initially to screen putative thermostable PGAs from the database, various other factors such as high arginine to lysine ratio, less content of thermolabile amino acids, presence of proline in β-turns, more number of ion-pair and other non-bonded interactions were also considered for comparison. A modified consensus approach designed could further identify stabilizing residue positions by site-specific comparison between mesostable and thermostable PGAs. A most likely thermostable enzyme identified from the analysis was PGA from Paracoccus denitrificans (PdPGA). This was cloned, expressed and tested for its thermostable nature using biochemical and biophysical experiments. The consensus site-specific sequence-based approach predicted PdPGA to be more thermostable than Escherichia coli PGA, but not as thermostable as the PGA from Achromobacter xylosoxidans. Experimental data showed that PdPGA was comparatively less thermostable than Achromobacter xylosoxidans PGA, although thermostability factors favored a much higher stability. Despite being mesostable, PdPGA being active and stable at alkaline pH is an advantage. Finally, several residue positions could be identified in PdPGA, which upon mutation selectively could improve the thermostability of the enzyme.