Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Prosper N. Boyaka is active.

Publication


Featured researches published by Prosper N. Boyaka.


Journal of Immunology | 2003

Effective Mucosal Immunity to Anthrax: Neutralizing Antibodies and Th Cell Responses Following Nasal Immunization with Protective Antigen

Prosper N. Boyaka; Angela Tafaro; Romy Fischer; Stephen H. Leppla; Kohtaro Fujihashi; Jerry R. McGhee

Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4+ T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4+ Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.


Journal of Immunology | 2001

RANTES Potentiates Antigen-Specific Mucosal Immune Responses

James W. Lillard; Prosper N. Boyaka; Dennis D. Taub; Jerry R. McGhee

RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4+ T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-γ, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.


PLOS ONE | 2012

MiR-101 and miR-144 Regulate the Expression of the CFTR Chloride Channel in the Lung

Fatemat Hassan; Gerard J. Nuovo; Melissa Crawford; Prosper N. Boyaka; Stephen Kirkby; Serge P. Nana-Sinkam; Estelle Cormet-Boyaka

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3′UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.


American Journal of Pathology | 2000

Human Nasopharyngeal-Associated Lymphoreticular Tissues: Functional Analysis of Subepithelial and Intraepithelial B and T Cells from Adenoids and Tonsils

Prosper N. Boyaka; Peter F. Wright; Mariarosaria Marinaro; Hiroshi Kiyono; Joyce E. Johnson; Ricardo A. Gonzales; Mine R. Ikizler; Jay A. Werkhaven; Raymond J. Jackson; Kohtaro Fujihashi; Simonetta Di Fabio; Herman F. Staats; Jerry R. McGhee

Subepithelial and intraepithelial lymphocytes of human adenoids and tonsils were characterized and directly compared to determine the potential contribution of these tissues to mucosal and systemic immune responses. The distribution of T and B cell subsets, cytokine patterns, and antibody (Ab) isotype profiles were similar for adenoids and tonsils. Both tissues contained predominantly B cells ( approximately 65%), approximately 5% macrophages, and 30% CD3(+) T cells. The T cells were primarily of the CD4(+) subset ( approximately 80%). Tonsillar intraepithelial lymphocytes were also enriched in B cells. The analysis of dispersed cells revealed a higher frequency of cells secreting IgG than IgA and the predominant Ig subclass profiles were IgG1 > IgG3 and IgA1 > IgA2, respectively. In situ analysis also revealed higher numbers of IgG- than IgA-positive cells. These IgG-positive cells were present in the epithelium and in the subepithelial zones of both tonsils and adenoids. Mitogen-triggered T cells from tonsils and adenoids produced both Th1- and Th2-type cytokines, clearly exhibiting their pluripotentiality for support of cell-mediated and Ab responses. Interestingly, antigen-specific T cells produced interferon-gamma and lower levels of interleukin-5. These results suggest that adenoids and tonsils of the nasopharyngeal-associated lymphoreticular tissues represent a distinct component of the mucosal-associated lymphoreticular tissues with features of both systemic and mucosal compartments.


Journal of Clinical Investigation | 2000

Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl– currents

Anjaparavanda P. Naren; Anke Di; Estelle Cormet-Boyaka; Prosper N. Boyaka; Jerry R. McGhee; Weihong Zhou; Kimio Akagawa; Tomonori Fujiwara; Ulrich Thome; John F. Engelhardt; Deborah J. Nelson; Kevin L. Kirk

The CFTR Cl(-) channel controls salt and water transport across epithelial tissues. Previously, we showed that CFTR-mediated Cl(-) currents in the Xenopus oocyte expression system are inhibited by syntaxin 1A, a component of the membrane trafficking machinery. This negative modulation of CFTR function can be reversed by soluble syntaxin 1A peptides and by the syntaxin 1A binding protein, Munc-18. In the present study, we determined whether syntaxin 1A is expressed in native epithelial tissues that normally express CFTR and whether it modulates CFTR currents in these tissues. Using immunoblotting and immunofluorescence, we observed syntaxin 1A in native gut and airway epithelial tissues and showed that epithelial cells from these tissues express syntaxin 1A at >10-fold molar excess over CFTR. Syntaxin 1A is seen near the apical cell surfaces of human bronchial airway epithelium. Reagents that disrupt the CFTR-syntaxin 1A interaction, including soluble syntaxin 1A cytosolic domain and recombinant Munc-18, augmented cAMP-dependent CFTR Cl(-) currents by more than 2- to 4-fold in mouse tracheal epithelial cells and cells derived from human nasal polyps, but these reagents did not affect CaMK II-activated Cl(-) currents in these cells.


The FASEB Journal | 2010

The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice.

Ramiro E. Toribio; Holly A. Brown; Chad M. Novince; Brandlyn Marlow; Krista M. Hernon; Lisa G. Lanigan; Blake Eason Hildreth; Jillian L. Werbeck; Sherry T. Shu; Gwendolen Lorch; Michelle M. Carlton; John Foley; Prosper N. Boyaka; Laurie K. McCauley; Thomas J. Rosol

The functions of parathyroid hormone‐related protein (PTHrP) on morphogenesis, cell proliferation, apoptosis, and calcium homeostasis have been attributed to its N terminus. Evidence suggests that many of these effects are not mediated by the N terminus but by the midregion, a nuclear localization sequence (NLS), and C terminus of the protein. A knock‐in mouse lacking the midregion, NLS, and C terminus of PTHrP (Pthrp△/△) was developed. Pthrp△/△ mice had craniofacial dysplasia, chondrodysplasia, and kyphosis, with most mice dying by d 5 of age. In bone, there were fewer chondrocytes and osteoblasts per area, bone mass was decreased, and the marrow was less cellular, with erythroid hypoplasia. Cellular proliferation was impaired, and apoptosis was increased. Runx2, Ocn, Sox9, Crtl1, ß‐catenin, Runx1, ephrin B2, cyclin D1, and Gata1 were underexpressed while P16/ Ink4a, P21, GSK‐3ß, Il‐6, Ffg3, and Ihh were overexpressed. Mammary gland development was aberrant, and energy metabolism was deregulated. These results establish that the midregion, NLS, and C terminus of PTHrP are crucial for the commitment of osteogenic and hematopoietic precursors to their lineages, and for survival, and many of the effects of PTHrP on development are not mediated by its N terminus. The down‐regulation of Runx1, Runx2, and Sox9 indicates that PTHrP is a modulator of transcriptional activation during stem cell commitment. Toribio, R E., Brown, H. A., Novince, C. M., Marlow, B. Hernon, K., Lanigan, L. G., Hildreth III, B. E., Werbeck, J. L., Shu, S. T., Lorch, G., Carlton, M., Foley, J., Boyaka, P., McCauley, L. K., Rosol, T. J. The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J. 24, 1947–1957 (2010). www.fasebj.org


Journal of Immunology | 2006

Bacillus anthracis Edema Toxin Acts as an Adjuvant for Mucosal Immune Responses to Nasally Administered Vaccine Antigens

Alexandra Duverger; Raymond J. Jackson; Frederick W. van Ginkel; Romy Fischer; Angela Tafaro; Stephen H. Leppla; Kohtaro Fujihashi; Hiroshi Kiyono; Jerry R. McGhee; Prosper N. Boyaka

Anthrax edema toxin (EdTx) is an AB-type toxin that binds to anthrax toxin receptors on target cells via the binding subunit, protective Ag (PA). Edema factor, the enzymatic A subunit of EdTx, is an adenylate cyclase. We found that nasal delivery of EdTx enhanced systemic immunity to nasally coadministered OVA and resulted in high OVA-specific plasma IgA and IgG (mainly IgG1 and IgG2b). The edema factor also enhanced immunity to the binding PA subunit itself and promoted high levels of plasma IgG and IgA responses as well as neutralizing PA Abs. Mice given OVA and EdTx also exhibited both PA- and OVA-specific IgA and IgG Ab responses in saliva as well as IgA Ab responses in vaginal washes. EdTx as adjuvant triggered OVA- and PA-specific CD4+ T cells which secreted IFN-γ and selected Th2-type cytokines. The EdTx up-regulated costimulatory molecule expression by APCs but was less effective than cholera toxin for inducing IL-6 responses either by APCs in vitro or in nasal washes in vivo. Finally, nasally administered EdTx did not target CNS tissues and did not induce IL-1 mRNA responses in the nasopharyngeal-associated lymphoepithelial tissue or in the olfactory bulb epithelium. Thus, EdTx derivatives could represent an alternative to the ganglioside-binding enterotoxin adjuvants and provide new tools for inducing protective immunity to PA-based anthrax vaccines.


Journal of Immunology | 2001

Oral QS-21 Requires Early IL-4 Help for Induction of Mucosal and Systemic Immunity

Prosper N. Boyaka; Mariarosaria Marinaro; Raymond J. Jackson; Frederik W. van Ginkel; Estelle Cormet-Boyaka; Kevin L. Kirk; Charlotte R. Kensil; Jerry R. McGhee

The highly purified saponin derivative, QS-21, from the Quillaja saponaria Molina tree has been proved to be safe for parenteral administration and represents a potential alternative to bacterial enterotoxin derivatives as a mucosal adjuvant. Here we report that p.o. administration of QS-21 with the vaccine protein tetanus toxoid elicited strong serum IgM and IgG Ab responses, which were only slightly enhanced by further oral immunization. The IgG Ab subclass responses were predominantly IgG1 followed by IgG2b for the 50-μg p.o. dose of QS-21, whereas the 250-μg p.o. dose also induced IgG2a and IgG3 Abs. Low oral QS-21 doses induced transient IgE Ab responses 7 days after the primary immunization, whereas no IgE Ab responses were seen in mice given the higher QS-21 dose. Further, low but not high p.o. QS-21 doses triggered Ag-specific secretory IgA (S-IgA) Ab responses. Th cell responses showed higher IFN-γ (Th1-type) and lower IL-5, IL-6, and IL-10 (Th2-type) secretion after the high QS-21 p.o. dose than after low doses. Interestingly, the mucosal adjuvant activity of low oral QS-21 doses was diminished in IL-4−/− mice, suggesting a role for this cytokine in the initiation of mucosal immunity by oral QS-21. In summary, our results show that oral QS-21 enhances immunity to coadministered Ag and that different doses of QS-21 lead to distinct patterns of cytokine and serum Ab responses. We also show that an early IL-4 response is required for the induction of mucosal immunity by oral QS-21 as adjuvant.


Vaccine | 2008

A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity.

Tatsuya Fukuiwa; Shinichi Sekine; Ryoki Kobayashi; Hideaki Suzuki; Kosuke Kataoka; Rebekah S. Gilbert; Yuichi Kurono; Prosper N. Boyaka; Arthur M. Krieg; Jerry R. McGhee; Kohtaro Fujihashi

We explore cellular and molecular mechanisms of nasal adjuvant of a combination of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligodeoxynucleotides (CpG ODN). The double DNA adjuvant given with OVA maintained prolonged OVA-specific secretory IgA (S-IgA) Ab responses in external secretions for more than 25 weeks after the final immunization. Further, both Th1- and Th2-type cytokine responses were induced by this combined adjuvant regimen. The frequencies of plasmacytoid DCs (pDCs) and CD8(+) DCs were significantly increased in nasopharyngeal-associated lymphoreticular tissue (NALT) of mice given the combined adjuvant. Importantly, when we examined adjuvanticity of pFL plus CpG ODN in 2-year-old mice, significant levels of mucosal IgA Ab responses were also induced. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for the development of an effective mucosal vaccine for the elderly.


Journal of Immunology | 2003

Chimeras of labile toxin one and cholera toxin retain mucosal adjuvanticity and direct Th cell subsets via their B subunit.

Prosper N. Boyaka; Mari Ohmura; Kohtaro Fujihashi; Toshiya Koga; Masafumi Yamamoto; Mi-Na Kweon; Yoshifumi Takeda; Raymond J. Jackson; Hiroshi Kiyono; Yoshikazu Yuki; Jerry R. McGhee

Native cholera toxin (nCT) and the heat-labile toxin 1 (nLT) of enterotoxigenic Escherichia coli are AB5-type enterotoxins. Both nCT and nLT are effective adjuvants that promote mucosal and systemic immunity to protein Ags given by either oral or nasal routes. Previous studies have shown that nCT as mucosal adjuvant requires IL-4 and induces CD4-positive (CD4+) Th2-type responses, while nLT up-regulates Th1 cell production of IFN-γ and IL-4-independent Th2-type responses. To address the relative importance of the A or B subunits in CD4+ Th cell subset responses, chimeras of CT-A/LT-B and LT-A/CT-B were constructed. Mice nasally immunized with CT-A/LT-B or LT-A/CT-B and the weak immunogen OVA developed OVA-specific, plasma IgG Abs titers similar to those induced by either nCT or nLT. Both CT-A/LT-B and LT-A/CT-B promoted secretory IgA anti-OVA Ab, which established their retention of mucosal adjuvant activity. The CT-A/LT-B chimera, like nLT, induced OVA-specific mucosal and peripheral CD4+ T cells secreting IFN-γ and IL-4-independent Th2-type responses, with plasma IgG2a anti-OVA Abs. Further, LT-A/CT-B, like nCT, promoted plasma IgG1 more than IgG2a and IgE Abs with OVA-specific CD4+ Th2 cells secreting high levels of IL-4, but not IFN-γ. The LT-A/CT-B chimera and nCT, but not the CT-A/LT-B chimera or nLT, suppressed IL-12R expression and IFN-γ production by activated T cells. Our results show that the B subunits of enterotoxin adjuvants regulate IL-12R expression and subsequent Th cell subset responses.

Collaboration


Dive into the Prosper N. Boyaka's collaboration.

Top Co-Authors

Avatar

Jerry R. McGhee

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kohtaro Fujihashi

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Jackson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariarosaria Marinaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge