Przemyslaw A. Grabowicz
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Przemyslaw A. Grabowicz.
PLOS ONE | 2012
Przemyslaw A. Grabowicz; José J. Ramasco; Esteban Moro; Josep M. Pujol; Víctor M. Eguíluz
An increasing fraction of todays social interactions occur using online social media as communication channels. Recent worldwide events, such as social movements in Spain or revolts in the Middle East, highlight their capacity to boost peoples coordination. Online networks display in general a rich internal structure where users can choose among different types and intensity of interactions. Despite this, there are still open questions regarding the social value of online interactions. For example, the existence of users with millions of online friends sheds doubts on the relevance of these relations. In this work, we focus on Twitter, one of the most popular online social networks, and find that the network formed by the basic type of connections is organized in groups. The activity of the users conforms to the landscape determined by such groups. Furthermore, Twitters distinction between different types of interactions allows us to establish a parallelism between online and offline social networks: personal interactions are more likely to occur on internal links to the groups (the weakness of strong ties); events transmitting new information go preferentially through links connecting different groups (the strength of weak ties) or even more through links connecting to users belonging to several groups that act as brokers (the strength of intermediary ties).
PLOS ONE | 2014
Przemyslaw A. Grabowicz; José J. Ramasco; Bruno Gonçalves; Víctor M. Eguíluz
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someone’s location from their friends’ locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of the networks not captured by models uncoupling mobility and social interactions such as: i) the total size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by a simplified version of our model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
web search and data mining | 2013
Przemyslaw A. Grabowicz; Luca Maria Aiello; Víctor M. Eguíluz; Alejandro Jaimes
Social groups play a crucial role in social media platforms because they form the basis for user participation and engagement. Groups are created explicitly by members of the community, but also form organically as members interact. Due to their importance, they have been studied widely (e.g., community detection, evolution, activity, etc.). One of the key questions for understanding how such groups evolve is whether there are different types of groups and how they differ. In Sociology, theories have been proposed to help explain how such groups form. In particular, the common identity and common bond theory states that people join groups based on identity (i.e., interest in the topics discussed) or bond attachment (i.e., social relationships). The theory has been applied qualitatively to small groups to classify them as either topical or social. We use the identity and bond theory to define a set of features to classify groups into those two categories. Using a dataset from Flickr, we extract user-defined groups and automatically-detected groups, obtained from a community detection algorithm. We discuss the process of manual labeling of groups into social or topical and present results of predicting the group label based on the defined features. We directly validate the predictions of the theory showing that the metrics are able to forecast the group type with high accuracy. In addition, we present a comparison between declared and detected groups along topicality and sociality dimensions.
EPL | 2012
Przemyslaw A. Grabowicz; Víctor M. Eguíluz
Many complex systems are characterized by broad distributions capturing, for example, the size of firms, the population of cities or the degree distribution of complex networks. Typically this feature is explained by means of a preferential growth mechanism. Although heterogeneity is expected to play a role in the evolution, it is usually not considered in the modeling probably due to a lack of empirical evidence on how it is distributed. We characterize the intrinsic heterogeneity of groups in an online community and then show that together with a simple linear growth and an inhomogeneous birth rate it explains the broad distribution of group members.
arXiv: Physics and Society | 2013
Przemyslaw A. Grabowicz; José J. Ramasco; Víctor M. Eguíluz
An increasing number of today’s social interactions occur using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, and Flickr gathers amateurs and professionals of photography. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the service’s purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, and news feeds exposing broadcasted content. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter, we describe some of the results of research studies on the structure, dynamics, and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies, and computer science.
EPJ Data Science | 2014
David Martin-Borregon; Luca Maria Aiello; Przemyslaw A. Grabowicz; Alejandro Jaimes; Ricardo A. Baeza-Yates
Social groups play a crucial role in online social media because they form the basis for user participation and engagement. Although widely studied in their static and evolutionary aspects, no much attention has been devoted to the exploration of the nature of groups. In fact, groups can originate from different aggregation processes that may be determined by several orthogonal factors. A key question in this scenario is whether it is possible to identify the different types of groups that emerge spontaneously in online social media and how they differ. We propose a general framework for the characterization of groups along the geographical, temporal, and socio-topical dimensions and we apply it on a very large dataset from Flickr. In particular, we define a new metric to account for geographic dispersion, we use a clustering approach on activity traces to extract classes of different temporal footprints, and we transpose the “common identity and common bond” theory into metrics to identify the skew of a group towards sociality or topicality. We directly validate the predictions of the sociological theory showing that the metrics are able to forecast with high accuracy the group type when compared to a human-generated ground truth. Last, we frame our contribution into a wider context by putting in relation different types of groups with communities detected algorithmically on the social graph and by showing the effect that the group type might have on processes of information diffusion. Results support the intuition that a more nuanced description of groups could improve not only the understanding of the activity of the user base but also the interpretation of other phenomena occurring on social graphs.
EPJ Data Science | 2014
Przemyslaw A. Grabowicz; Luca Maria Aiello; Filippo Menczer
Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: (i) captures persistent trends in the structure of dynamic weighted networks, (ii) smoothens transitions between the snapshots of dynamic network, and (iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.
international world wide web conferences | 2017
Julia Proskurnia; Przemyslaw A. Grabowicz; Ryota Kobayashi; Carlos Castillo; Philippe Cudré-Mauroux; Karl Aberer
Applying classical time-series analysis techniques to online content is challenging, as web data tends to have data quality issues and is often incomplete, noisy, or poorly aligned. In this paper, we tackle the problem of predicting the evolution of a time series of user activity on the web in a manner that is both accurate and interpretable, using related time series to produce a more accurate prediction. We test our methods in the context of predicting signatures for online petitions using data from thousands of petitions posted on The Petition Site - one of the largest platforms of its kind. We observe that the success of these petitions is driven by a number of factors, including promotion through social media channels and on the front page of the petitions platform. We propose an interpretable model that incorporates seasonality, aging effects, self-excitation, and external effects. The interpretability of the model is important for understanding the elements that drives the activity of an online content. We show through an extensive empirical evaluation that our model is significantly better at predicting the outcome of a petition than state-of-the-art techniques.
PeerJ | 2016
Clayton A. Davis; Giovanni Luca Ciampaglia; Luca Maria Aiello; Keychul Chung; Michael Conover; Emilio Ferrara; Alessandro Flammini; Geoffrey C. Fox; Xiaoming Gao; Bruno Gonçalves; Przemyslaw A. Grabowicz; Kibeom Hong; Pik-Mai Hui; Scott McCaulay; Karissa McKelvey; Mark R. Meiss; Snehal Patil; Chathuri Peli Kankanamalage; Valentin Pentchev; Judy Qiu; Jacob Ratkiewicz; Alex Rudnick; Benjamin Serrette; Prashant Shiralkar; Onur Varol; Lilian Weng; Tak-Lon Wu; Andrew J. Younge; Filippo Menczer
Archive | 2011
Przemyslaw A. Grabowicz; José J. Ramasco; Esteban Moro; Josep M. Pujol; Víctor M. Eguíluz