Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Przemyslaw Dopieralski is active.

Publication


Featured researches published by Przemyslaw Dopieralski.


Journal of Materials Chemistry | 2011

On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores

Przemyslaw Dopieralski; Padmesh Anjukandi; Matthias Rückert; Motoyuki Shiga; Jordi Ribas–Arino; Dominik Marx

The role played by polyethylene-like oligomers in transducing external tensile forces to benzocyclobutene mechanophores is investigated computationally. It is demonstrated that the oligomer chains do indeed exert a notable influence on the force dependence of the activation energies of both conrotatory and disrotatory ring-opening processes of a cis 1,2-disubstituted benzocyclobutene. This opens the doorway to tuning the properties of mechanoresponsive materials not only by changing the properties of the mechanophore itself, but also by tailoring the force-transducing chain molecules attached to it. Furthermore, it is found that these chains even have a profound impact on the topology of the force-transformed potential energy surface in the vicinity of conrotatory transition states. Hitherto unexpected and most striking is the phenomenon that some of these conrotatory transition states are found to drive the system to disrotatory products.


Journal of Chemical Theory and Computation | 2011

On the Intramolecular Hydrogen Bond in Solution: Car-Parrinello and Path Integral Molecular Dynamics Perspective.

Przemyslaw Dopieralski; Charles L. Perrin; Zdzisław Latajka

The issue of the symmetry of short, low-barrier hydrogen bonds in solution is addressed here with advanced ab initio simulations of a hydrogen maleate anion in different environments, starting with the isolated anion, going through two crystal structures (sodium and potassium salts), then to an aqueous solution, and finally in the presence of counterions. By Car-Parrinello and path integral molecular dynamics simulations, it is demonstrated that the position of the proton in the intramolecular hydrogen bond of an aqueous hydrogen maleate anion is entirely related to the solvation pattern around the oxygen atoms of the intramolecular hydrogen bond. In particular, this anion has an asymmetric hydrogen bond, with the proton always located on the oxygen atom that is less solvated, owing to the instantaneous solvation environment. Simulations of water solutions of hydrogen maleate ion with two different counterions, K(+) and Na(+), surprisingly show that the intramolecular hydrogen-bond potential in the case of the Na(+) salt is always asymmetric, regardless of the hydrogen bonds to water, whereas for the K(+) salt, the potential for H motion depends on the location of the K(+). It is proposed that repulsion by the larger and more hydrated K(+) is weaker than that by Na(+) and competitive with solvation by water.


Nature Chemistry | 2017

Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution

Przemyslaw Dopieralski; Jordi Ribas–Arino; Padmesh Anjukandi; Martin Krupička; Dominik Marx

The reduction of disulfides has a broad importance in chemistry, biochemistry and materials science, particularly those methods that use mechanochemical activation. Here we show, using isotensional simulations, that strikingly different mechanisms govern disulfide cleavage depending on the external force. Desolvation and resolvation processes are found to be crucial, as they have a direct impact on activation free energies. The preferred pathway at moderate forces, a bimolecular SN2 attack of OH- at sulfur, competes with unimolecular C-S bond rupture at about 2 nN, and the latter even becomes barrierless at greater applied forces. Moreover, our study unveils a surprisingly rich reactivity scenario that also includes the transformation of concerted SN2 reactions into pure bond-breaking processes at specific forces. Given that these forces are easily reached in experiments, these insights will fundamentally change our understanding of mechanochemical activation in general, which is now expected to be considerably more intricate than previously thought.


Journal of Chemical Theory and Computation | 2010

Proton Transfer Dynamics in Crystalline Maleic Acid from Molecular Dynamics Calculations.

Przemyslaw Dopieralski; Zdzisław Latajka; Ivar Olovsson

The crystal structure of maleic acid, the cis conformer of HOOC-CH═CH-COOH has been investigated by Car-Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) simulations. The interesting feature of this compound, compared to the trans conformer, fumaric acid, is that both intra- and intermolecular hydrogen bonds are present. CPMD simulations at 100 K indicate that the energy barrier height for proton transfer is too high for thermal jumps over the barrier in both the intra- and intermolecular hydrogen bonds. Dynamics at 295 K reveal that the occupancy ratio of the proton distribution in both the intra- and intermolecular hydrogen bonds is 0.96/0.04. The time lag between the proton transfers in the intra- and intermolecular hydrogen bonds is in the range of 2-9 fs. This is slightly shorter than the time lag obtained previously for fumaric acid, where only intermolecular hydrogen bonds are present. It is also interesting to notice that in most cases the proton transfer process starts in the intramolecular hydrogen bond and subsequently follows in the intermolecular hydrogen bond. Vibrational spectra of the investigated system and its deuterated analogs HOOC-CH═CH-COOD and DOOC-CH═CH-COOD have been calculated and compared with experimental data.


Acta Crystallographica Section B-structural Science | 2010

Proton-transfer dynamics in the (HCO3-)(2) dimer of KHCO3 from Car-Parrinello and path-integrals molecular dynamics calculations

Przemyslaw Dopieralski; Zdzisław Latajka; Ivar Olovsson

The proton motion in the (HCO(3)(-))(2) dimer of KHCO(3) at 298 K has been studied with Car-Parrinello molecular dynamics (CPMD) and path-integrals molecular dynamics (PIMD) simulations. According to earlier neutron diffraction studies at 298 K hydrogen is disordered and occupies two positions with an occupancy ratio of 0.804/0.196. A simulation with only one unit cell is not sufficient to reproduce the disorder of the protons found in the experiments. The CPMD results with four cells, 0.783/0.217, are in close agreement with experiment. The motion of the two protons along the O...O bridge is highly correlated inside one dimer, but strongly uncoupled between different dimers. The present results support a mechanism for the disorder which involves proton transfer from donor to acceptor and not orientational disordering of the entire dimer. The question of simultaneous or successive proton transfer in the two hydrogen bonds in the dimer remains unanswered. During the simulation situations with almost simultaneous proton transfer with a time gap of around 1 fs were observed, as well as successive processes where first one proton is transferred and then the second one with a time gap of around 20 fs. The calculated vibrational spectrum is in good agreement with the experimental IR spectrum, but a slightly different assignment of the bands is indicated by the present simulations.


PLOS ONE | 2014

The Effect of Tensile Stress on the Conformational Free Energy Landscape of Disulfide Bonds

Padmesh Anjukandi; Przemyslaw Dopieralski; Jordi Ribas–Arino; Dominik Marx

Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C–C–S–S dihedrals, and . Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force–clamp spectroscopy and computer simulation. The and angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so–called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C–C–S–S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two –carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides.


Journal of Chemical Physics | 2009

First-principles investigation of isomerization by proton transfer in β-fumaric acid crystal

Przemyslaw Dopieralski; Jarosław J. Panek; Zdzisław Latajka

Crystal structure of fumaric acid was investigated by Car-Parrinello molecular dynamics and Path Integral molecular dynamics. We propose a mechanism of isomerization by proton transfer in the solid state. It is shown that the three conformers of fumaric acid observed in cryogenic Ar matrix are also present in the solid. Standard ab initio Car-Parrinello dynamics of the studied solid at 100 K indicates that barrier height for proton transfer is too high to enable thermal jump over the barrier. Path Integral method in this particular case significantly changes proton behavior in the hydrogen bridge, and the proton tunneling process is observed. Vibrational spectra of investigated system HOOC-CH=CH-COOH and its deuterated analog DOOC-CH=CH-COOD were calculated and compared with experimental data.


Angewandte Chemie | 2016

Force‐Induced Reversal of β‐Eliminations: Stressed Disulfide Bonds in Alkaline Solution

Przemyslaw Dopieralski; Jordi Ribas-Arino; Padmesh Anjukandi; Martin Krupička; Dominik Marx

Understanding the impact of tensile forces on disulfide bond cleavage is not only crucial to the breaking of cross-linkers in vulcanized materials such as strained rubber, but also to the regulation of protein activity by disulfide switches. By using ab initio simulations in the condensed phase, we investigated the response of disulfide cleavage by β-elimination to mechanical stress. We reveal that the rate-determining first step of the thermal reaction, which is the abstraction of the β-proton, is insensitive to external forces. However, forces larger than about 1 nN were found to reshape the free-energy landscape of the reaction so dramatically that a second channel is created, where the order of the reaction steps is reversed, turning β-deprotonation into a barrier-free follow-up process to C-S cleavage. This transforms a slow and force-independent process with second-order kinetics into a unimolecular reaction that is greatly accelerated by mechanical forces.


Journal of Molecular Modeling | 2013

Entropy versus aromaticity in the conformational dynamics of aromatic rings

Oleg V. Shishkin; Przemyslaw Dopieralski; Irina V. Omelchenko; Leonid Gorb; Zdzisław Latajka; Jerzy Leszczynski

AbstractComparison of the results of Car-Parrinello molecular dynamics simulations of isolated benzene, pyrimidine and 1,2,4-triazine molecules reveals that the unusually low population of planar geometry of the benzene ring is caused by entropy effects despite its high aromaticity. The decrease in symmetry of the molecule results in smaller changes in entropy and Gibbs free energy due to out-of-plane deformations of the ring, leading to an increase in the population of planar geometry of the ring. This leads to differences in the topology of potential energy and Gibbs free energy surfaces. FigureEntropy vs aromaticity in conformational dynamics of aromatic rings


Theoretical Chemistry Accounts | 2018

Ab initio molecular dynamics study of overtone excitations in formic acid and its water complex

Teemu Järvinen; Jan Lundell; Przemyslaw Dopieralski

Abstract In this article, we present results from ab initio molecular dynamics simulation of overtone excitation in formic acid monomer and its water complex in the gas phase. For the monomer, a conformation change is observed employing both OH and CH vibrational excitations, which supports experimental findings. In the formic acid–water complex, interconversion also takes place, but it proceeds via hydrogen exchange rather than via intramolecular reaction. Simulations raise a question on effect of quantum and matrix effects to the results. Also, a brief test of different computation methods was done on the system.

Collaboration


Dive into the Przemyslaw Dopieralski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oleg V. Shishkin

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge