Przemysław Gorzelak
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Przemysław Gorzelak.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Tomasz K. Baumiller; Mariusz A. Salamon; Przemysław Gorzelak; Richard Mooi; Charles G. Messing; Forest J. Gahn
It has been argued that increases in predation over geological time should result in increases in defensive adaptations in prey taxa. Recent in situ and laboratory observations indicate that cidaroid sea urchins feed on live stalked crinoids, leaving distinct bite marks on their skeletal elements. Similar bite marks on fossil crinoids from Poland strongly suggest that these animals have been subject to echinoid predation since the Triassic. Following their near-demise during the end-Permian extinction, crinoids underwent a major evolutionary radiation during the Middle–Late Triassic that produced distinct morphological and behavioral novelties, particularly motile taxa that contrasted strongly with the predominantly sessile Paleozoic crinoid faunas. We suggest that the appearance and subsequent evolutionary success of motile crinoids were related to benthic predation by post-Paleozoic echinoids with their stronger and more active feeding apparatus and that, in the case of crinoids, the predation-driven Mesozoic marine revolution started earlier than in other groups, perhaps soon after the end-Permian extinction.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Przemysław Gorzelak; Mariusz A. Salamon; Tomasz K. Baumiller
Sea urchins are a major component of recent marine communities where they exert a key role as grazers and benthic predators. However, their impact on past marine organisms, such as crinoids, is hard to infer in the fossil record. Analysis of bite mark frequencies on crinoid columnals and comprehensive genus-level diversity data provide unique insights into the importance of sea urchin predation through geologic time. These data show that over the Mesozoic, predation intensity on crinoids, as measured by bite mark frequencies on columnals, changed in step with diversity of sea urchins. Moreover, Mesozoic diversity changes in the predatory sea urchins show a positive correlation with diversity of motile crinoids and a negative correlation with diversity of sessile crinoids, consistent with a crinoid motility representing an effective escape strategy. We contend that the Mesozoic diversity history of crinoids likely represents a macroevolutionary response to changes in sea urchin predation pressure and that it may have set the stage for the recent pattern of crinoid diversity in which motile forms greatly predominate and sessile forms are restricted to deep-water refugia.
Paleobiology | 2014
Mariusz A. Salamon; Przemysław Gorzelak; Robert Niedźwiedzki; Dawid Trzęsiok; Tomasz K. Baumiller
Abstract Recent observations indicate that shell fragmentation can be a useful tool in assessing crushing predation in marine communities. However, criteria for recognizing shell breakage caused by durophagous predators versus physical factors are still not well established. Here, we provide data from tumbling and aquarium experiments to argue that physical and biotic processes lead to different patterns of shell damage, specifically that angular shell fragments are good indicators of durophagous predation. Using such angular shell fragments as a predation proxy, we analyze data from 57 European Paleozoic localities spanning the Ordovician through the Mississippian. Our results reveal a significant increase in angular shell fragments (either occurring as isolated valves or present in regurgitalites) in the Mississippian. The timing of this increase is coincident with the increased diversity of crushing predators as well as marked anti-predatory changes in the architecture and mode of life of invertebrate prey observed after the end-Devonian Hangenberg extinction (359 Ma). More specifically, the observed trend in shell fragmentation constitutes strong and independent confirmation of a recently suggested end-Devonian changeover in the primary method of fish predation from shearing to crushing. These results also highlight the important effect of extinction events, not only on taxonomic diversity, but also on the nature of predator-prey interactions.
Geobiology | 2013
Przemysław Gorzelak; Jarosław Stolarski; Maciej Mazur; Anders Meibom
This paper reports the results of micro- to nanostructural and geochemical analyses of calcitic skeletons from extant deep-sea stalked crinoids. Fine-scale (SEM, FESEM, AFM) observations show that the crinoid skeleton is composed of carbonate nanograins, about 20-100 nm in diameter, which are partly separated by what appears to be a few nm thick organic layers. Sub-micrometre-scale geochemical mapping of crinoid ossicles using a NanoSIMS ion microprobe, combined with synchrotron high-spatial-resolution X-ray micro-fluorescence (μ-XRF) maps and X-ray absorption near-edge structure spectroscopy (XANES) show that high Mg concentration in the central region of the stereom bars correlates with the distribution of S-sulphate, which is often associated with sulphated polysaccharides in biocarbonates. These data are consistent with biomineralization models suggesting a close association between organic components (including sulphated polysaccharides) and Mg ions. Additionally, geochemical analyses (NanoSIMS, energy dispersive spectroscopy) reveal that significant variations in Mg occur at many levels: within a single stereom trabecula, within a single ossicle and within a skeleton of a single animal. Together, these data suggest that physiological factors play an important role in controlling Mg content in crinoid skeletons and that great care should be taken when using their skeletons to reconstruct, for example, palaeotemperatures and Mg/Ca palaeo-variations of the ocean.
PALAIOS | 2009
Przemysław Gorzelak; Mariusz A. Salamon
Abstract Although most investigations of crinoid-predator interactions have focused on nektonic vertebrates (fishes and sharks), slow-moving benthic animals such as cidaroid echinoids may also interact antagonistically with stalked crinoids. This was recently supported by observations of extant isocrinids in modern deep-sea environments near the west end of Grand Bahama Island. In this paper, we report on stalks of crinoids from the Late Jurassic of south-central Poland, which co-occur with remains of cidaroids and show characteristic holes, bite marks, and signs of breakage. By analogy with the modern example, we interpret this as evidence of predation by cidaroids on crinoids. These Late Jurassic data may indicate that benthic predation was intense during the mid-Mesozoic. Importantly, this discovery also strengthens the hypothesis that benthic predators may have exerted considerable influence on the evolution of stalked crinoids.
Journal of Structural Biology | 2011
Przemysław Gorzelak; Jarosław Stolarski; Philippe Dubois; C. Kopp; Anders Meibom
This paper reports the results of the first dynamic labeling experiment with regenerating spines of sea urchins Paracentrotus lividus using the stable isotope ²⁶Mg and NanoSIMS high-resolution isotopic imaging, which provide a direct information about the growth process. Growing spines were labeled twice (for 72 and 24 h, respectively) by increasing the abundance of ²⁶Mg in seawater. The incorporation of ²⁶Mg into the growing spines was subsequently imaged with the NanoSIMS ion microprobe. Stereom trabeculae initially grow as conical micro-spines, which form within less than 1 day. These micro-spines fuse together by lateral outgrowths and form a thin, open meshwork (inner stereom), which is subsequently reinforced by addition of layered thickening deposits (outer stereom). The (longitudinal) growth rate of the inner stereom is ca. 125 μm/day. A single (ca. 1 μm) thickening layer in the stereom trabeculae is deposited during 24h. The thickening process is contemporaneous with the formation micro-spines and involves both longitudinal trabeculae and transverse bridges to a similar degree. Furthermore, the skeleton-forming cells remain active in the previously formed open stereom for at least 10 days, and do not migrate upwards until the end of the thickening process. The experimental capability presented here provides a new way to obtain detailed information about the skeleton formation of a multitude of marine, calcite producing organisms.
Geology | 2010
Mariusz A. Salamon; Przemysław Gorzelak; Bruno Ferré; Rafał Lach
Although crinoids appear not to have been involved in the great change in diversity at the Cretaceous-Paleogene (K-Pg) boundary extinction event, it has been assumed that representatives of order Roveacrinida became extinct during this time. Well-preserved fossils from the Danian (early Paleocene) of Poland demonstrate that these crinoids survived into the earliest Cenozoic. This find merits the qualification of this order as a “dead clade walking.”
Acta Palaeontologica Polonica | 2009
Jarosław Stolarski; Przemysław Gorzelak; Maciej Mazur; Yves Marrocchi; Anders Meibom
Calcite isocrinid ossicles from the Middle Jurassic (Bathonian) clays in Gnaszyn (central Poland) show perfectly preserved micro- and nanostructural details typical of diagenetically unaltered echinoderm skeleton. Stereom pores are filled with ferroan calcite cements that sealed off the skeleton from diagenetic fluids and prevented structural and geochemical alteration. In contrast with high-Mg calcite skeleton of modern, tropical echinoderms, the fossil crinoid ossicles from Gnaszyn contain only 5.0–5.3 mole% Of MgCO3. This low Mg content can be a result of either a low temperature environment (ca. 10°C) and/or low Mg/Ca seawater ratio. Both conditions have been proposed for the Middle Jurassic marine environment. Occurrence of Mg-enriched central region of stereom bars of Jurassic columnal ossicle of Chariocrinus andreae is consistent with the concept of magnesium ions involvement in earliest growth phases of calcium carbonate biominerals.
Nature Communications | 2014
Przemysław Gorzelak; Mariusz A. Salamon; Rafał Lach; Michał Loba; Bruno Ferré
It has long been assumed that photosensitivity in echinoderms is mainly related to diffuse photoreception mediated by photosensitive regions embedded within the dermis. Recent studies, however, have shown that some extant echinoderms may also display modified ossicles with microlenses acting as sophisticated photosensory organs. Thanks to their remarkable properties, these calcitic microlenses serve as an inspiration for scientists across various disciplines among which bio-inspired engineering. However, the evolutionary origins of these microlenses remain obscure. Here we provide microstructural evidence showing that analogous spherical calcitic lenses had been acquired in some brittle stars and starfish of Poland by the Late Cretaceous (Campanian, ~79 Ma). Specimens from Poland described here had a highly developed visual system similar to that of modern forms. We suggest that such an optimization of echinoderm skeletons for both mechanical and optical purposes reflects escalation-related adaptation to increased predation pressure during the so-called Mesozoic Marine Revolution.
PLOS ONE | 2013
Przemysław Gorzelak; Mariusz A. Salamon; Dawid Trzęsiok; Robert Niedźwiedzki
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces.