Przemyslaw Wachulak
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Przemyslaw Wachulak.
Optics Express | 2011
Przemyslaw Wachulak; A. Bartnik; Henryk Fiedorowicz; J. Kostecki
In this paper we report a desk-top microscopy reaching 50 nm spatial resolution in very compact setup using a gas-puff laser plasma EUV source. The thickness of an object and the bandwidth of illuminating radiation were studied in order to estimate their quantitative influence on the EUV microscope spatial resolution. EUV images of various thickness objects obtained by illumination with variable bandwidth EUV radiation were compared in terms of knife-edge spatial resolution to study the bandwidth/object thickness parasitic influence on spatial resolution of the EUV microscope.
Optics Letters | 2010
Przemyslaw Wachulak; Andrzej Bartnik; Henryk Fiedorowicz
We report the first (to our knowledge) demonstration of a tabletop, extreme UV (EUV) transmission microscope at 13.8 nm wavelength with a spatial (half-pitch) resolution of 69 nm. In the experiment, a compact laser-plasma EUV source based on a gas puff target is applied to illuminate an object. A multilayer ellipsoidal mirror is used to focus quasi-monochromatic EUV radiation onto the object, while a Fresnel zone plate objective forms the image. The experiment and the spatial resolution measurements, based on a knife-edge test, are described. The results might be useful for the realization of a compact high-resolution tabletop imaging systems for actinic defect characterization.
Optics Express | 2013
Erik B. Malm; Nils Monserud; Christopher Brown; Przemyslaw Wachulak; Huiwen Xu; Ganesh Balakrishnan; Weilun Chao; Erik H. Anderson; Mario C. Marconi
We demonstrate single and multi-shot Fourier transform holography with the use of a tabletop extreme ultraviolet laser. The reference wave was produced by a Fresnel zone plate with a central opening that allowed the incident beam to illuminate the sample directly. The high reference wave intensity allows for larger objects to be imaged compared to mask-based lensless Fourier transform holography techniques. We obtain a spatial resolution of 169 nm from a single laser pulse and a resolution of 128 nm from an accumulation of 20 laser pulses for an object ~11x11μm(2) in size. This experiment utilized a tabletop extreme ultraviolet laser that produces a highly coherent ~1.2 ns laser pulse at 46.9 nm wavelength.
Microscopy and Microanalysis | 2015
Przemyslaw Wachulak; Alfio Torrisi; Muhammad Fahad Nawaz; A. Bartnik; Daniel Adjei; Šárka Vondrová; Jana Turňová; Alexandr Jancarek; J. Limpouch; M. Vrbova; Henryk Fiedorowicz
Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from water window spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the water window is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.
Optics Letters | 2014
Przemyslaw Wachulak; Ł. Węgrzyński; Zdenko Zápražný; A. Bartnik; T. Fok; R. Jarocki; J. Kostecki; M. Szczurek; Dušan Korytár; Henryk Fiedorowicz
A tomographic method for three-dimensional reconstruction of low density objects is presented and discussed. The experiment was performed in the extreme ultraviolet (EUV) spectral region using a desktop system for enhanced optical contrast and employing a compact laser-plasma EUV source, based on a double stream gas puff target. The system allows for volume reconstruction of transient gaseous objects, in this case gas jets, providing additional information for further characterization and optimization. Experimental details and reconstruction results are shown.
Physica Scripta | 2014
A. Bartnik; Przemyslaw Wachulak; Henryk Fiedorowicz; T. Fok; R. Jarocki; M. Szczurek
In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser–plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser–plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.
Journal of Microscopy | 2017
Alfio Torrisi; Przemyslaw Wachulak; Łukasz Węgrzyński; T. Fok; Andrzej Bartnik; Tomas Parkman; Šárka Vondrová; Jana Turňová; Bartłomiej J. Jankiewicz; Bartosz Bartosewicz; Henryk Fiedorowicz
We report on a very compact desk‐top transmission extreme ultraviolet (EUV) microscope based on a laser‐plasma source with a double stream gas‐puff target, capable of acquiring magnified images of objects with a spatial (half‐pitch) resolution of sub‐50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi‐monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.
Optics Express | 2014
Nils Monserud; Erik B. Malm; Przemyslaw Wachulak; Vakhtang Putkaradze; Ganesh Balakrishnan; Weilun Chao; Erik H. Anderson; David Carlton; Mario C. Marconi
We recorded the fast oscillation of sub-micron cantilevers using time-resolved extreme ultraviolet (EUV) Fourier transform holography. A tabletop capillary discharge EUV laser with a wavelength of 46.9 nm provided a large flux of coherent illumination that was split using a Fresnel zone plate to generate the object and the reference beams. The reference wave was produced by the first order focus while a central opening in the zone plate provided a direct illumination of the cantilevers. Single-shot holograms allowed for the composition of a movie featuring the fast oscillation. Three-dimensional displacements of the object were determined as well by numerical back-propagation, or refocusing of the electromagnetic fields during the reconstruction of a single hologram.
Photonics Letters of Poland | 2014
T. Fok; Ł. Węgrzyński; M. Kozlová; J. Nejdl; Przemyslaw Wachulak; R. Jarocki; A. Bartnik; Henryk Fiedorowicz
The paper presents the way that colour can serve solving the problem of calibration points indexing in a camera geometrical calibration process. We propose a technique in which indexes of calibration points in a black-and-white chessboard are represented as sets of colour regions in the neighbourhood of calibration points. We provide some general rules for designing a colour calibration chessboard and provide a method of calibration image analysis. We show that this approach leads to obtaining better results than in the case of widely used methods employing information about already indexed points to compute indexes. We also report constraints concerning the technique. Nowadays we are witnessing an increasing need for camera geometrical calibration systems. They are vital for such applications as 3D modelling, 3D reconstruction, assembly control systems, etc. Wherever possible, calibration objects placed in the scene are used in a camera geometrical calibration process. This approach significantly increases accuracy of calibration results and makes the calibration data extraction process easier and universal. There are many geometrical camera calibration techniques for a known calibration scene [1]. A great number of them use as an input calibration points which are localised and indexed in the scene. In this paper we propose the technique of calibration points indexing which uses a colour chessboard. The presented technique was developed by solving problems we encountered during experiments with our earlier methods of camera calibration scene analysis [2]-[3]. In particular, the proposed technique increases the number of indexed points points in case of local lack of calibration points detection. At the beginning of the paper we present a way of designing a chessboard pattern. Then we describe a calibration point indexing method, and finally we show experimental results. A black-and-white chessboard is widely used in order to obtain sub-pixel accuracy of calibration points localisation [1]. Calibration points are defined as corners of chessboard squares. Assuming the availability of rough localisation of these points, the points can be indexed. Noting that differences in distances between neighbouring points in calibration scene images differ slightly, one of the local searching methods can be employed (e.g. [2]). Methods of this type search for a calibration point to be indexed, using a window of a certain size. The position of the window is determined by a vector representing the distance between two previously indexed points in the same row or column. However, experiments show that this approach has its disadvantages, as described below. * E-mail: [email protected] Firstly, there is a danger of omitting some points during indexing in case of local lack of calibration points detection in a neighbourhood (e.g. caused by the presence of non-homogeneous light in the calibration scene). A particularly unfavourable situation is when the local lack of detection effects in the appearance of separated regions of detected calibration points. It is worth saying that such situations are likely to happen for calibration points situated near image borders. Such points are very important for the analysis of optical nonlinearities, and a lack of them can significantly influence the accuracy of distortion modelling. Secondly, such methods may give wrong results in the case of optical distortion with strong nonlinearities when getting information about the neighbouring index is not an easy task. Beside this, the methods are very sensitive to a single false localisation of a calibration point. Such a single false localisation can even result in false indexing of a big set of calibration points. To avoid the above-mentioned problems, we propose using a black-and-white chessboard which contains the coded index of a calibration point in the form of colour squares situated in the nearest neighbourhood of each point. The index of a certain calibration point is determined by colours of four nearest neighbouring squares (Fig.1). An order of squares in such foursome is important. Because the size of a colour square is determined only by the possibility of correct colour detection, the size of a colour square can be smaller than the size of a black or white square. The larger size of a black or white square is determined by the requirements of the exact localisation step which follows the indexing of calibration points [3]. In this step, edge information is extracted from a blackand-white chessboard. This edge information needs larger Artur Nowakowski, Wladyslaw Skarbek Institute of Radioelectronics, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, [email protected] Received February 10, 2009; accepted March 27, 2009; published March 31, 2009 http://www.photonics.pl/PLP
X-RAY OPTICS AND MICROANALYSIS: Proceedings of the 21st International Congress | 2012
Przemyslaw Wachulak; A. Bartnik; Henryk Fiedorowicz; J. Kostecki; R. Jarocki; M. Szczurek; A. Szczurek; Torsten Feigl; Ladislav Pina
High resolution imaging methods and techniques are currently under development. One of them is an extreme ultraviolet (EUV) microscopy, based on Fresnel zone plates. In this paper a compact, high-repetition, laser-plasma EUV source, emitting quasi-monochromatic radiation at 13.8nm wavelength was used in a desktop EUV transmission microscopy with a spatial (half-pitch) resolution of 50nm. EUV microscopy images of objects with various thicknesses and the spatial resolution measurements using the knife-edge test are presented.