Pu Chun Ke
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pu Chun Ke.
Small | 2009
Sijie Lin; Jason Reppert; Qian Hu; JoAn S. Hudson; Michelle L. Reid; Tatsiana A. Ratnikova; Apparao M. Rao; Hong Luo; Pu Chun Ke
Recent development of nanotechnology has reshaped the landscape of modern science and technology, while in the meantime raised concerns about the adverse effects of nanomaterials on biological systems and the environment. Owing to their mutual interaction, carbon-based nanomaterials readily aggregate and are not considered potential contaminants in the liquid phase. However, when discharged into the environment, the hydrophobicity of nanomaterials can be averted through their interaction with natural organic matter (NOM), a heterogeneous mixture of decomposed animals and plants and a major pollutant carrier in nature. Consequently, mobile NOM-modified nanomaterials may pose a threat to ecological terrestrial species through further physical, chemical, and biological processes. The impact of nanomaterials on high plants has scantly been examined in the current literature. Among the studies available, none have used major food crops or carbon nanoparticles (a major class of nanomaterials) for their evaluations. Although both enhanced and inhibited growth have been reported for vegetations exposed to nanomaterials at various developmental stages, including seed germina-
Small | 2010
Ran Chen; Tatsiana A. Ratnikova; Matthew B. Stone; Sijie Lin; Mercy Lard; George Huang; Jo An S. Hudson; Pu Chun Ke
Consequently, a body of literature over the past decade hasbeen centered on cytotoxicity, genotoxicity, and ecotoxicity ofnanomaterials, pointing to the general understanding thatnanotoxicity is often derived from the physiochemicalproperties of the nanomaterials and their interplay with thehost environment.
PLOS ONE | 2013
Jonathan H. Shannahan; Xianyin Lai; Pu Chun Ke; Ramakrishna Podila; Jared M. Brown; Frank A. Witzmann
The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial’s surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.
BMC Biotechnology | 2013
Chittaranjan Kole; Phullara Kole; K. Manoj Randunu; Poonam Choudhary; Ramakrishna Podila; Pu Chun Ke; Apparao M. Rao; Richard Kenneth Marcus
BackgroundRecent research on nanoparticles in a number of crops has evidenced for enhanced germination and seedling growth, physiological activities including photosynthetic activity and nitrogen metabolism, mRNA expression and protein level, and also positive changes in gene expression indicating their potential use in crop improvement. We used a medicinally rich vegetable crop, bitter melon, as a model to evaluate the effects of seed treatment with a carbon-based nanoparticle, fullerol [C60(OH)20], on yield of plant biomass and fruit characters, and phytomedicine contents in fruits.ResultsWe confirmed the uptake, translocation and accumulation of fullerol through bright field imaging and Fourier transform infra-red spectroscopy. We observed varied effects of seed treatment at five concentrations, including non-consequential and positive, on plant biomass yield, fruit yield and its component characters, and content of five phytomedicines in fruits. Fullerol-treatment resulted in increases up to 54% in biomass yield and 24% in water content. Increases of up to 20% in fruit length, 59% in fruit number, and 70% in fruit weight led to an improvement up to 128% in fruit yield. Contents of two anticancer phytomedicines, cucurbitacin-B and lycopene, were enhanced up to 74% and 82%, respectively, and contents of two antidiabetic phytomedicines, charantin and insulin, were augmented up to 20% and 91%, respectively. Non-significant correlation inter se plant biomass, fruit yield, phytomedicine content and water content evidenced for separate genetic control and biosynthetic pathways for production of plant biomass, fruits, and phytomedicines in fruits, and also no impact of increased water uptake.ConclusionsWhile our results indicated possibility of improving crop yield and quality by using proper concentrations of fullerol, extreme caution needs to be exercised given emerging knowledge about accumulation and toxicity of nanoparticles in bodily tissues.
Particle and Fibre Toxicology | 2011
Xiaojia Wang; Pranita Katwa; Ramakrishna Podila; Pengyu Chen; Pu Chun Ke; Apparao M. Rao; Dianne M. Walters; Christopher J. Wingard; Jared M. Brown
BackgroundMulti-walled carbon nanotubes (MWCNTs) are widely used in many disciplines due to their unique physical and chemical properties. Therefore, some concerns about the possible human health and environmental impacts of manufactured MWCNTs are rising. We hypothesized that instillation of MWCNTs impairs pulmonary function in C57BL/6 mice due to development of lung inflammation and fibrosis.MethodsMWCNTs were administered to C57BL/6 mice by oropharyngeal aspiration (1, 2, and 4 mg/kg) and we assessed lung inflammation and fibrosis by inflammatory cell infiltration, collagen content, and histological assessment. Pulmonary function was assessed using a FlexiVent system and levels of Ccl3, Ccl11, Mmp13 and IL-33 were measured by RT-PCR and ELISA.ResultsMice administered MWCNTs exhibited increased inflammatory cell infiltration, collagen deposition and granuloma formation in lung tissue, which correlated with impaired pulmonary function as assessed by increased resistance, tissue damping, and decreased lung compliance. Pulmonary exposure to MWCNTs induced an inflammatory signature marked by cytokine (IL-33), chemokine (Ccl3 and Ccl11), and protease production (Mmp13) that promoted the inflammatory and fibrotic changes observed within the lung.ConclusionsThese results further highlight the potential adverse health effects that may occur following MWCNT exposure and therefore we suggest these materials may pose a significant risk leading to impaired lung function following environmental and occupational exposures.
Soft Matter | 2009
Luca Monticelli; Emppu Salonen; Pu Chun Ke; Ilpo Vattulainen
We review recent simulation studies of carbon nanoparticles interacting with lipid membranes. We first consider the state-of-the-art methodology associated with atomistic as well as coarse-grained models of carbon nanoparticles and lipid systems, and then discuss recent simulation studies of fullerenes, carbon nanotubes and other carbon-based nanoparticles interacting with biological lipid interfaces. We close this article with a brief consideration of the future challenges guided by experiments.
Small | 2013
Jonathan H. Shannahan; Jared M. Brown; Ran Chen; Pu Chun Ke; Xianyin Lai; Somenath Mitra; Frank A. Witzmann
In biological environments, nanomaterials associate with proteins forming a protein corona (PC). The PC may alter the nanomaterials pharmacokinetics and pharmacodynamics, thereby influencing toxicity. Using a label-free mass spectrometry-based proteomics approach, the composition of the PC is examined for a set of nanotubes (NTs) including unmodified and carboxylated single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), polyvinylpyrrolidone (PVP)-coated MWCNT (MWCNT-PVP), and nanoclay. NTs are incubated for 1 h in simulated cell culture conditions, then washed, resuspended in PBS, and assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for their associated PC. To determine those attributes that influence PC formation, the NTs are extensively characterized. NTs had negative zeta potentials in water (SWCNT-COOH < MWCNT-COOH < unmodified NTs) while carboxylation increases their hydrodynamic sizes. All NTs are also found to associate a common subset of proteins including albumin, titin, and apolipoproteins. SWCNT-COOH and MWCNT-COOH are found to bind the greatest number of proteins (181 and 133 respectively) compared to unmodified NTs (<100), suggesting covalent binding to protein amines. Modified NTs bind a number of unique proteins compared to unmodified NTs, implying hydrogen bonding and electrostatic interactions are involved in PC formation. PVP-coating of MWCNT did not influence PC composition, further reinforcing the possibility of hydrogen bonding and electrostatic interactions. No relationships are found between PC composition and corresponding isoelectric point, hydropathy, or aliphatic index, implying minimal roles of hydrophobic interaction and pi-stacking.
Applied Physics Letters | 2012
Ramakrishna Podila; Ran Chen; Pu Chun Ke; Jared M. Brown; Apparao M. Rao
Herein, we examined the dependence of protein adsorption on the nanoparticle surface in the presence of functional groups. Our UV-visible spectrophotometry, transmission electron microscopy, infrared spectroscopy, and dynamic light scattering measurements evidently suggested that the functional groups play an important role in the formation of nanoparticle-protein corona. We found that uncoated and surfactant-free silver nanoparticles derived from a laser ablation process promoted a maximum protein (bovine serum albumin) coating due to increased changes in entropy. On the other hand, bovine serum albumin displayed a relatively lower affinity for electrostatically stabilized nanoparticles due to the constrained entropy changes.
Toxicological Sciences | 2015
Jonathan H. Shannahan; Ramakrishna Podila; Abdullah A. Aldossari; Hilary P. Emerson; Brian A. Powell; Pu Chun Ke; Apparao M. Rao; Jared M. Brown
Addition of a protein corona (PC) or protein adsorption layer on the surface of nanomaterials following their introduction into physiological environments may modify their activity, bio-distribution, cellular uptake, clearance, and toxicity. We hypothesize that silver nanoparticles (AgNPs) will associate with proteins common to human serum and cell culture media forming a PC that will impact cell activation and cytotoxicity. Furthermore, the role of scavenger receptor BI (SR-BI) in mediating this toxicity was evaluated. Citrate-suspended 20 nm AgNPs were incubated with human serum albumin (HSA), bovine serum albumin (BSA), high-density lipoprotein (HDL), or water (control) to form a PC. AgNPs associated with each protein (HSA, BSA, and HDL) forming PCs as assessed by electron microscopy, hyperspectral analysis, ζ-potential, and hydrodynamic size. Addition of the PC decreased uptake of AgNPs by rat lung epithelial and rat aortic endothelial cells. Hyperspectral analysis demonstrated a loss of the AgNP PC following internalization. Cells demonstrated concentration-dependent cytotoxicity following exposure to AgNPs with or without PCs (0, 6.25, 12.5, 25 or 50 μg/ml). All PC-coated AgNPs were found to activate cells by inducing IL-6 mRNA expression. A small molecule SR-BI inhibitor was utilized to determine the role of SR-BI in the observed effects. Pretreatment with the SR-BI inhibitor decreased internalization of AgNPs with or without PCs, and reduced both cytotoxicity and IL-6 mRNA expression. This study characterizes the formation of a PC on AgNPs and demonstrates its influence on cytotoxicity and cell activation through a cell surface receptor.
Nanoscale | 2013
Feng Ding; Slaven Radic; Ran Chen; Pengyu Chen; Nicholas K. Geitner; Jared M. Brown; Pu Chun Ke
The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.