Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pu Dai is active.

Publication


Featured researches published by Pu Dai.


Journal of Translational Medicine | 2009

GJB2 mutation spectrum in 2063 Chinese patients with nonsyndromic hearing impairment

Pu Dai; Fei Yu; Bing Han; Xuezhong Liu; Guojian Wang; Qi You Li; Yongyi Yuan; Xin Liu; Deliang Huang; Dongyang Kang; Xin Zhang; Huijun Yuan; Kun Yao; Jinsheng Hao; Jia He; Yong Ming He; Youqin Wang; Qing Ye; Youjun Yu; Hongyan Lin; Lijia Liu; Wei Deng; Xiuhui Zhu; Yiwen You; Jinghong Cui; Nongsheng Hou; Xuehai Xu; Jin Jin Zhang; Liang Tang; Rendong Song

BackgroundMutations in GJB2 are the most common molecular defects responsible for autosomal recessive nonsyndromic hearing impairment (NSHI). The mutation spectra of this gene vary among different ethnic groups.MethodsIn order to understand the spectrum and frequency of GJB2 mutations in the Chinese population, the coding region of the GJB2 gene from 2063 unrelated patients with NSHI was PCR amplified and sequenced.ResultsA total of 23 pathogenic mutations were identified. Among them, five (p.W3X, c.99delT, c.155_c.158delTCTG, c.512_c.513insAACG, and p.Y152X) are novel. Three hundred and seven patients carry two confirmed pathogenic mutations, including 178 homozygotes and 129 compound heterozygotes. One hundred twenty five patients carry only one mutant allele. Thus, GJB2 mutations account for 17.9% of the mutant alleles in 2063 NSHI patients. Overall, 92.6% (684/739) of the pathogenic mutations are frame-shift truncation or nonsense mutations. The four prevalent mutations; c.235delC, c.299_c.300delAT, c.176_c.191del16, and c.35delG, account for 88.0% of all mutantalleles identified. The frequency of GJB2 mutations (alleles) varies from 4% to 30.4% among different regions of China. It also varies among different sub-ethnic groups.ConclusionIn some regions of China, testing of the three most common mutations can identify at least one GJB2 mutant allele in all patients. In other regions such as Tibet, the three most common mutations account for only 16% the GJB2 mutant alleles. Thus, in this region, sequencing of GJB2 would be recommended. In addition, the etiology of more than 80% of the mutant alleles for NSHI in China remains to be identified. Analysis of other NSHI related genes will be necessary.


Journal of Translational Medicine | 2009

Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China

Yongyi Yuan; Yiwen You; Deliang Huang; Jinghong Cui; Yong Wang; Qiang Wang; Fei Yu; Dongyang Kang; Huijun Yuan; Dongyi Han; Pu Dai

BackgroundEvery year, 30,000 babies are born with congenital hearing impairment in China. The molecular etiology of hearing impairment in the Chinese population has not been investigated thoroughly. To provide appropriate genetic testing and counseling to families, we performed a comprehensive investigation of the molecular etiology of nonsyndromic deafness in two typical areas from northern and southern China.MethodsA total of 284 unrelated school children with hearing loss who attended special education schools in China were enrolled in this study, 134 from Chifeng City in Inner Mongolia and the remaining 150 from Nangtong City in JiangSu Province. Screening was performed for GJB2, GJB3, GJB6, SLC26A4, 12S rRNA, and tRNAser(UCN)genes in this population. All patients with SLC26A4 mutations or variants were subjected to high-resolution temporal bone CT scan to verify the enlarged vestibular aqueduct.ResultsMutations in the GJB2 gene accounted for 18.31% of the patients with nonsyndromic hearing loss, 1555A>G mutation in mitochondrial DNA accounted for 1.76%, and SLC26A4 mutations accounted for 13.73%. Almost 50% of the patients with nonsyndromic hearing loss in these typical Chinese areas carried GJB2 or SLC26A4 mutations. No significant differences in mutation spectrum or prevalence of GJB2 and SLC26A4 were found between the two areas.ConclusionIn this Chinese population, 54.93% of cases with hearing loss were related to genetic factors. The GJB2 gene accounted for the etiology in about 18.31% of the patients with hearing loss, SLC26A4 accounted for about 13.73%, and mtDNA 1555A>G mutation accounted for 1.76%. Mutations in GJB3, GJB6, and mtDNA tRNAser(UCN)were not common in this Chinese cohort. Conventionally, screening is performed for GJB2, SLC26A4, and mitochondrial 12S rRNA in the Chinese deaf population.


Human Genetics | 2009

Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31

Xue Zhong Liu; Yongyi Yuan; Denise Yan; Emilie Hong Ding; Xiao Mei Ouyang; Yu Fei; Wenxue Tang; Huijun Yuan; Qing Chang; Li Lin Du; Xin Zhang; Guojian Wang; Shoeb Ahmad; Dong Yang Kang; Xi Lin; Pu Dai

Mutations in the genes coding for connexin 26 (Cx26) and connexin 31 (Cx31) cause non-syndromic deafness. Here, we provide evidence that mutations at these two connexin genes can interact to cause hearing loss in digenic heterozygotes in humans. We have screened 108 GJB2 heterozygous Chinese patients for mutations in GJB3 by sequencing. We have excluded the possibility that mutations in exon 1 of GJB2 and the deletion of GJB6 are the second mutant allele in these Chinese heterozygous probands. Two different GJB3 mutations (N166S and A194T) occurring in compound heterozygosity with the 235delC and 299delAT of GJB2 were identified in three unrelated families (235delC/N166S, 235delC/A194T and 299delAT/A194T). Neither of these mutations in Cx31 was detected in DNA from 200 unrelated Chinese controls. Direct physical interaction of Cx26 with Cx31 is supported by data showing that Cx26 and Cx31 have overlapping expression patterns in the cochlea. In addition, by coimmunoprecipitation of mouse cochlear membrane proteins, we identified the presence of heteromeric Cx26/Cx31 connexons. Furthermore, by cotransfection of mCherry-tagged Cx26 and GFP-tagged Cx31 in human embryonic kidney (HEK)-293 cells, we demonstrated that the two connexins were able to co-assemble in vitro in the same junction plaque. Together, our data indicate that a genetic interaction between these two connexin genes can lead to hearing loss.


American Journal of Human Genetics | 2010

Loss-of-Function Mutations in the PRPS1 Gene Cause a Type of Nonsyndromic X-linked Sensorineural Deafness, DFN2

Xuezhong Liu; Han D; Jianzhong Li; Bing Han; Xiaomei Ouyang; Jing Cheng; Xu Li; Zhanguo Jin; Youqin Wang; Maria Bitner-Glindzicz; Xiangyin Kong; Heng Xu; Albena Kantardzhieva; Roland D. Eavey; Christine E. Seidman; Jonathan G. Seidman; Li L. Du; Zheng-Yi Chen; Pu Dai; Maikun Teng; Denise Yan; Huijun Yuan

We report a large Chinese family with X-linked postlingual nonsyndromic hearing impairment in which the critical linkage interval spans a genetic distance of 5.41 cM and a physical distance of 15.1 Mb that overlaps the DFN2 locus. Mutation screening of the PRPS1 gene in this family and in the three previously reported DFN2 families identified four different missense mutations in PRPS1. These mutations result in a loss of phosphoribosyl pyrophosphate (PRPP) synthetase 1 activity, as was shown in silico by structural analysis and was shown in vitro by enzymatic activity assays in erythrocytes and fibroblasts from patients. By in situ hybridization, we demonstrate expression of Prps1 in murine vestibular and cochlea hair cells, with continuous expression in hair cells and postnatal expression in the spiral ganglion. Being the second identified gene associated with X-linked nonsyndromic deafness, PRPS1 will be a good candidate gene for genetic testing for X-linked nonsyndromic hearing loss.


American Journal of Medical Genetics Part A | 2006

Variants in mitochondrial tRNAGlu, tRNAArg, and tRNAThr may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese families with hearing loss†

Wie-Yen Young; Lidong Zhao; Yaping Qian; Ronghua Li; Jing Chen; Huijun Yuan; Pu Dai; Suoqiang Zhai; Dongyi Han; Min-Xin Guan

We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside‐induced and nonsyndromic hearing loss. Clinical evaluation revealed the variable phenotype of hearing loss including severity, age‐at‐onset, audiometric configuration in these subjects. Penetrances of hearing loss in BJ107, BJ108, and BJ109 pedigrees are 35%, 63%, and 67%, respectively. Mutational analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mitochondrial DNA (mtDNA) variants belonging to haplogroups N, F, and M, respectively. Of these variants, the A14693G mutation in the tRNAGlu, the T15908C mutation in the tRNAThr, and the T10454C mutation in the tRNAArg are of special interest as these mutations occur at positions which are highly evolutionarily conserved nucleotides of corresponding tRNAs. These homoplasmic mtDNA mutations were absent among 156 unrelated Chinese controls. The A14693G and T10454C mutations occur at the highly conserved bases of the TψC‐loop of tRNAGlu and tRNAArg, respectively. Furthermore, the T15908C mutation in the tRNAThr disrupts a highly conserved A‐U base‐pairing at the D‐stem of this tRNA. The alteration of structure of these tRNAs by these mtDNA mutations may lead to a failure in tRNA metabolism, thereby causing impairment of mitochondrial translation. Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA mutations. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness‐associated 12S rRNA A1555G mutation in those Chinese pedigrees.


Physiological Genomics | 2009

Distinct and novel SLC26A4/Pendrin mutations in Chinese and U.S. patients with nonsyndromic hearing loss

Pu Dai; Andrew K. Stewart; Fouad Chebib; Ann Hsu; Julia Rozenfeld; Deliang Huang; Dongyang Kang; Va Lip; Hong Fang; Hong Shao; Xin Liu; Fei Yu; Huijun Yuan; Margaret A. Kenna; David T. Miller; Yiping Shen; Yang W; Israel Zelikovic; Orah S. Platt; Dongyi Han; Seth L. Alper; Bai-Lin Wu

Mutations of the human SLC26A4/PDS gene constitute the most common cause of syndromic and nonsyndromic hearing loss. Definition of the SLC26A4 mutation spectrum among different populations with sensorineural hearing loss is important for development of optimal genetic screening services for congenital hearing impairment. We screened for SLC26A4 mutations among Chinese and U.S. subjects with hearing loss, using denaturing HPLC (DHPLC) and direct DNA sequencing. Fifty-two of 55 Chinese subjects with deafness accompanied by enlargement of the vestibular aqueduct (EVA) exhibited at least one mutant SLC26A4 allele, whereas SLC26A4 mutations were found in only 2 of 116 deaf Chinese patients without EVA. The spectrum of SLC26A4 mutations differed among Chinese and U.S. subjects and included 10 previously unreported SLC26A4 variants: 4 in the Chinese population (p.E303Q, p.X329, p.X467, p.X573) and 6 in the U.S. population (p.V250A, p.D266N, p.F354S, p.D697A, p.K715N, p.E737D). Among the seven novel in-frame missense mutations, five encoded SLC26A4 proteins with substantially reduced Cl(-)/anion exchange activity as expressed and measured in Xenopus oocytes, but four of these were sufficiently active to allow study of anion selectivity. The only mutant polypeptide exhibiting complete loss of anion exchange function, p.E303Q, was expressed at or near the oocyte surface at near-wild-type levels. Two variants, p.F354S and p.E737D, displayed selective reduction in relative rate of Cl(-)/HCO(3)(-) exchange compared with similarly measured rates of Cl(-)/Cl(-) and Cl(-)/I(-) exchange. Our data show that mutation analysis of the SLC26A4 gene is of high diagnostic yield among subjects with deafness and bilateral EVA in both China and the U.S. However, the pathogenicity of monoallelic SLC26A4 gene variants in patients with hearing loss remains unclear in many instances.


Genetics in Medicine | 2007

The prevalence of the 235delC GJB2 mutation in a Chinese deaf population

Pu Dai; Fei Yu; Bing Han; Yongyi Yuan; Qi Li; Guojian Wang; Xin Liu; Jia He; Deliang Huang; Dongyang Kang; Xin Zhang; Huijun Yuan; Eric S. Schmitt; Dongyi Han; Lee-Jun C. Wong

Purpose: Mutations in the GJB2 gene are the most frequently found mutations in patients with nonsyndromic hearing impairment in populations studied to date. However, the prevalence of mutations varies among different ethnic groups. In most areas of China, genetic testing for nonsyndromic hearing impairment is currently not available because of the lack of information regarding the molecular cause of nonsyndromic hearing impairment. The purpose of this study is to determine the prevalence of a common GJB2 mutation, 235delC, in Chinese deaf children.Methods: We collected DNA specimens from 3004 patients with nonsyndromic hearing impairment from 26 regions of China; 368 Han Chinese and 98 Uigur controls, and screened for the 235delC mutation. The coding exon of the GJB2 gene was polymerase chain reaction amplified, followed by restriction enzyme digestion with ApaI and analysis by agarose gel.Results: Overall, 488 patients (16.3%) were determined to carry at least one 235delC mutant allele, with 233 (7.8%) homozygotes and 255 (8.5%) heterozygotes. Therefore, within the subpopulations examined, the frequency varies from 0% to 14.7% for 235delC homozygotes and from 1.7% to 16.1% for heterozygotes. On the basis of this survey of the patient cohort as stated, Chinese patients with nonsyndromic hearing impairment appear to have a relatively higher 235delC frequency than that of other Asian populations.Conclusion: These results demonstrate that an easy and fast genetic testing method for this well-known GJB2 gene mutation can be made available for at least 2 million Chinese patients and family members with nonsyndromic hearing impairment. By screening for the common GJB2 235delC mutation, the molecular cause in as high as 15% of patients with nonsyndromic hearing impairment in certain regions of China can be identified. In addition, patients who are negative for the 235delC mutation would be candidates for further mutational analysis of GJB2 or other deafness-related genes.


Acta Oto-laryngologica | 2004

Correlation of Cochlear Blood Supply with Mitochondrial DNA Common Deletion in Presbyacusis

Pu Dai; Yang W; Sichang Jiang; Rui Gu; Huijun Yuan; Dongyi Han; Weiwei Guo; Juyang Cao

Objectives To study the relationships between cochlear hypoxia, mitochondrial (mt) DNA4977 deletion and metabolic features of mtDNA in presbyacusis. Material and Methods Sixty-seven temporal bones from a presbyacusis group, an age-matched control group and a young and middle-aged control group were involved in the experiment. Nested and tri-nested polymerase chain reactions (PCRs) were applied to test for the presence of the mtDNA4977 deletion. Computer imaging processing was used to measure blood vessel parameters in the internal acoustic meatus (IAM). Results The mtDNA4977 deletion was detected in 17/34 ears in the presbyacusis group, 4/19 ears in the age-matched control group and 0/14 ears in the young and middle-aged control group. In the presbyacusis group, the lumen of the vasa nervorum of the IAM showed a more severe narrowing in cases with than without the mtDNA4977 deletion. Conclusions The high incidence of the mtDNA4977 deletion in the temporal bones of presbyacusis patients suggests a correlation between the mtDNA4977 deletion and presbyacusis. Hypoxia of the cochlea may cause the mtDNA4977 deletion and other mtDNA mutants and furthermore may cause a reduction in mitochondrial oxidative phosphorylation and decreased function of the acoustic neural system. The symptoms of presbyacusis may occur when the function of the acoustic neural system is impaired as a result of abnormal mtDNA metabolism reaching a particular threshold.


Journal of Translational Medicine | 2008

Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

Pu Dai; Yongyi Yuan; Deliang Huang; Xiuhui Zhu; Fei Yu; Dongyang Kang; Huijun Yuan; Bai-Lin Wu; Dongyi Han; Lee-Jun C Wong

BackgroundThe molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study.MethodsOne hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays.ResultsTwenty-six patients (19.26%, 26/135) were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43) of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed.ConclusionIn Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135) of the patients with hearing loss. Together with GJB2 (23/135), SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the temporal bone CT scan to find EVA and inner ear malformation patients. This model has a unique advantage in epidemiologic study of large deaf population.


Genetics in Medicine | 2008

SLC26A4 c.919-2A>G varies among Chinese ethnic groups as a cause of hearing loss

Pu Dai; Qi Li; Deliang Huang; Yongyi Yuan; Dongyang Kang; David T. Miller; Hong Shao; Qingwen Zhu; Jia He; Fei Yu; Xin Liu; Bing Han; Huijun Yuan; Orah S. Platt; Dongyi Han; Bai-Lin Wu

Purpose: Mutations in the SLC26A4 gene are second only to GJB2 mutations as a currently identifiable genetic cause of sensorineural hearing loss. In most areas of China, genetic testing for sensorineural hearing loss is unavailable because of limited knowledge of the mutation spectrum. Although SLC26A4 c.919-2A>G (IVS7–2A>G) is a common mutation among some Asian populations, the mutation prevalence among various ethnic groups within China has not been studied.Methods: DNA specimens from 3271 subjects with moderate to profound sensorineural hearing loss from 27 regions of China were genotyped for the c.919-2A>G mutation by polymerase chain reaction/restriction-fragment-length polymorphism. Normal hearing controls from Han (n = 185) and Uigur (n = 152) populations were also tested.Results: Overall, 408 subjects with sensorineural hearing loss (12.5%) carried at least one c.919-2A>G allele, with 158 (4.8%) homozygotes and 250 (7.6%) heterozygotes. Within the subpopulations examined, the rate varies from 0% to 12.2% for c.919-2A>G homozygotes and from 0% to 17.6% for heterozygotes. Based on this cohort, Chinese subjects with sensorineural hearing loss seem to have a relatively higher c.919-2A>G frequency than that of other Asian populations.Conclusion: These results demonstrate that a simple and efficient genetic test for the c.919-2A>G mutation alone would identify the molecular cause in up to 8–12% of individuals with sensorineural hearing loss in a few eastern and central regions of China. Those who are negative for the c.919-2A>G mutation would be candidates for further mutational analysis of SLC26A4 or other deafness-related genes. This would greatly improve genetic diagnosis and counseling for a huge number of Chinese individuals and family members with sensorineural hearing loss in China, and many more ethnic Chinese in other countries, which might be up to one million.

Collaboration


Dive into the Pu Dai's collaboration.

Top Co-Authors

Avatar

Dongyi Han

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Yongyi Yuan

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Guojian Wang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Dongyang Kang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Huijun Yuan

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xin Zhang

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xue Gao

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Yu

Chinese PLA General Hospital

View shared research outputs
Top Co-Authors

Avatar

Mingyu Han

Chinese PLA General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge