Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pudur Jagadeeswaran is active.

Publication


Featured researches published by Pudur Jagadeeswaran.


Science | 2005

SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans.

Rebecca L. Lamason; Manzoor Ali P K Mohideen; Jason R. Mest; Andy Wong; Heather L. Norton; Michele C. Aros; Michael J. Jurynec; Xianyun Mao; Vanessa R. Humphreville; Jasper E. Humbert; Soniya Sinha; Jessica L. Moore; Pudur Jagadeeswaran; Wei Zhao; Gang Ning; Izabela Makalowska; Paul McKeigue; David H. O'Donnell; Rick A. Kittles; Esteban J. Parra; Nancy J. Mangini; David Grunwald; Mark D. Shriver; Victor A. Canfield; Keith C. Cheng

Lighter variations of pigmentation in humans are associated with diminished number, size, and density of melanosomes, the pigmented organelles of melanocytes. Here we show that zebrafish golden mutants share these melanosomal changes and that golden encodes a putative cation exchanger slc24a5 (nckx5) that localizes to an intracellular membrane, likely the melanosome or its precursor. The human ortholog is highly similar in sequence and functional in zebrafish. The evolutionarily conserved ancestral allele of a human coding polymorphism predominates in African and East Asian populations. In contrast, the variant allele is nearly fixed in European populations, is associated with a substantial reduction in regional heterozygosity, and correlates with lighter skin pigmentation in admixed populations, suggesting a key role for the SLC24A5 gene in human pigmentation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

pak2a mutations cause cerebral hemorrhage in redhead zebrafish

David A. Buchner; Fengyun Su; Jennifer S. Yamaoka; Makoto Kamei; Jordan A. Shavit; Linda K. Barthel; Beth McGee; Julio D. Amigo; Seongcheol Kim; Andrew Hanosh; Pudur Jagadeeswaran; Daniel Goldman; Nathan D. Lawson; Pamela A. Raymond; Brant M. Weinstein; David Ginsburg; Susan E. Lyons

The zebrafish is a powerful model for studying vascular development, demonstrating remarkable conservation of this process with mammals. Here, we identify a zebrafish mutant, redhead (rhdmi149), that exhibits embryonic CNS hemorrhage with intact gross development of the vasculature and normal hemostatic function. We show that the rhd phenotype is caused by a hypomorphic mutation in p21-activated kinase 2a (pak2a). PAK2 is a kinase that acts downstream of the Rho-family GTPases CDC42 and RAC and has been implicated in angiogenesis, regulation of cytoskeletal structure, and endothelial cell migration and contractility among other functions. Correction of the Pak2a-deficient phenotype by Pak2a overexpression depends on kinase activity, implicating Pak2 signaling in the maintenance of vascular integrity. Rescue by an endothelial-specific transgene further suggests that the hemorrhage seen in Pak2a deficiency is the result of an autonomous endothelial cell defect. Reduced expression of another PAK2 ortholog, pak2b, in Pak2a-deficient embryos results in a more severe hemorrhagic phenotype, consistent with partially overlapping functions for these two orthologs. These data provide in vivo evidence for a critical function of Pak2 in vascular integrity and demonstrate a severe disease phenotype resulting from loss of Pak2 function.


Blood Cells Molecules and Diseases | 2010

Zebrafish von Willebrand factor.

Maira Carrillo; Seongcheol Kim; Surendra Kumar Rajpurohit; Vrinda Kulkarni; Pudur Jagadeeswaran

von Willebrand factor (vWF) is a large protein involved in primary hemostasis. A dysfunction in this protein or an insufficient production of the protein leads to improper platelet adhesion/aggregation, resulting in a bleeding phenotype known as von Willebrand disease (vWD). To gain a better understanding of vWF interactions in vivo, the use of zebrafish as a model is ideal because of the transparency of the embryos and larvae. In this article, we examined the presence and function of vWF in hemostasis of zebrafish utilizing a variety of molecular methods. Using RT-PCR and antibody staining, we have shown that vWF mRNA is present in thrombocytes. Through antibody staining, we demonstrated vWF is synthesized in blood vessels. The role of zebrafish vWF in hemostasis was established through knockdown methods using vWF morpholino (vWF MO) antisense oligonucleotides. Embryos injected with vWF MO at the one to four cell stages resulted in a bleeding phenotype. Injection of embryos with vWF MO also caused an increase in time to occlusion within arteries in larvae upon laser induced injury. We then used vWF-specific Vivo-morpholinos (VMO) to induce vWF knockdown in adult zebrafish by targeting the exon homologous to the human exon 28 of the vWF gene. The reduced ristocetin-mediated agglutination of thrombocytes in a plate tilting assay, using blood from adult zebrafish injected with VMO, provided evidence that vWF is involved in the hemostatic process. We also administered desmopressin acetate to larvae and adults which resulted in enhanced aggregation/agglutination of thrombocytes. Zebrafish genome database analysis revealed the presence of GPIbβ gene. It also revealed the exon of zebrafish vWF gene corresponding to exon 28 of human vWF gene is highly similar to the exon 28 of human vWF gene, except that it has an insertion that leads to a translated peptide sequence that separates the two A domains coded by this exon. This exon is also conserved in other fishes. In summary, we established that zebrafish vWF has a role similar to that of vWF found in humans, thus, making zebrafish a useful model for studying the cell biology of vWF in vivo.


Blood Cells Molecules and Diseases | 2010

Vivo-Morpholino knockdown of αIIb: A novel approach to inhibit thrombocyte function in adult zebrafish

Seongcheol Kim; Uvaraj P. Radhakrishnan; Surendra Kumar Rajpurohit; Vrinda Kulkarni; Pudur Jagadeeswaran

Knockdown of protein function by antisense oligonucleotides has been used to understand the protein function not only in development but also in human diseases. Recently, Vivo-Morpholinos, chemically modified morpholinos which penetrate the cells, have been used in adult experimental animal models to alter the splicing and thereby change the protein expression. Until now, there have been no such studies using Vivo-Morpholinos to evaluate hemostatic function in adult animals. We injected alphaIIb Vivo-Morpholinos intravenously into adult zebrafish. Thrombocyte function was assayed by time to aggregation assay of the citrated blood, annexin V binding to thrombocytes, and gill bleeding. The thrombocyte functional inhibition occurred in 24 h after alphaIIb Vivo-Morpholinos injection and reached a maximum in 48 h. However, in 72 h, the inhibition was no longer observed. Reduction of annexin V binding to thrombocytes and increased gill bleeding were observed 48 h after alphaIIb Vivo-Morpholino injections. The action of the alphaIIb Vivo-Morpholino was demonstrated by the presence of an alternatively spliced alphaIIb mRNA and the reduction of alphaIIb in thrombocytes of fish treated with alphaIIb Vivo-Morpholino. These results provide the first proof of principle that thrombocyte function can be inhibited by thrombocyte-specific Vivo-Morpholinos in adult zebrafish and presents an approach to knockdown thrombocyte-specific genes to conduct biochemical studies in thrombocytes. This study also provides the first antisense antithrombotic approach to inhibit thrombocyte function in adult zebrafish.


PLOS ONE | 2011

Crystal structure of thrombin in complex with s-variegin: insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors

Cho Yeow Koh; Sundramurthy Kumar; Mária Kazimírová; Patricia A. Nuttall; Uvaraj P. Radhakrishnan; Seongcheol Kim; Pudur Jagadeeswaran; Takayuki Imamura; Jun Mizuguchi; Sadaaki Iwanaga; Kunchithapadam Swaminathan; R. Manjunathan Kini

The inhibition of thrombin is one of the important treatments of pathological blood clot formation. Variegin, isolated from the tropical bont tick, is a novel molecule exhibiting a unique ‘two-modes’ inhibitory property on thrombin active site (competitive before cleavage, noncompetitive after cleavage). For the better understanding of its function, we have determined the crystal structure of the human α-thrombin:synthetic-variegin complex at 2.4 Å resolution. The structure reveals a new mechanism of thrombin inhibition by disrupting the charge relay system. Based on the structure, we have designed 17 variegin variants, differing in potency, kinetics and mechanism of inhibition. The most active variant is about 70 times more potent than the FDA-approved peptidic thrombin inhibitor, hirulog-1/bivalirudin. In vivo antithrombotic effects of the variegin variants correlate well with their in vitro affinities for thrombin. Our results encourage that variegin and the variants show strong potential for the development of tunable anticoagulants.


Advances in Hematology | 2012

Zebrafish Thrombocytes: Functions and Origins

Gauri Khandekar; Seongcheol Kim; Pudur Jagadeeswaran

Platelets play an important role in mammalian hemostasis. Thrombocytes of early vertebrates are functionally equivalent to mammalian platelets. A substantial amount of research has been done to study platelet function in humans as well as in animal models. However, to date only limited functional genomic studies of platelets have been performed but are low throughput and are not cost-effective. Keeping this in mind we introduced zebrafish, a vertebrate genetic model to study platelet function. We characterized zebrafish thrombocytes and established functional assays study not only their hemostatic function but to also their production. We identified a few genes which play a role in their function and production. Since we introduced the zebrafish model for the study of hemostasis and thrombosis, other groups have adapted this model to study genes that are associated with thrombocyte function and a few novel genes have also been identified. Furthermore, transgenic zebrafish with GFP-tagged thrombocytes have been developed which helped to study the production of thrombocytes and their precursors as well as their functional roles not only in hemostasis but also hematopoiesis. This paper integrates the information available on zebrafish thrombocyte function and its formation.


PLOS ONE | 2009

Evolution of Primary Hemostasis in Early Vertebrates

Seongcheol Kim; Maira Carrillo; Vrinda Kulkarni; Pudur Jagadeeswaran

Hemostasis is a defense mechanism which protects the organism in the event of injury to stop bleeding. Recently, we established that all the known major mammalian hemostatic factors are conserved in early vertebrates. However, since their highly vascularized gills experience high blood pressure and are exposed to the environment, even very small injuries could be fatal to fish. Since trypsins are forerunners for coagulation proteases and are expressed by many extrapancreatic cells such as endothelial cells and epithelial cells, we hypothesized that trypsin or trypsin-like proteases from gill epithelial cells may protect these animals from gill bleeding following injuries. In this paper we identified the release of three different trypsins from fish gills into water under stress or injury, which have tenfold greater serine protease activity compared to bovine trypsin. We found that these trypsins activate the thrombocytes and protect the fish from gill bleeding. We found 27 protease-activated receptors (PARs) by analyzing zebrafish genome and classified them into five groups, based on tethering peptides, and two families, PAR1 and PAR2, based on homologies. We also found a canonical member of PAR2 family, PAR2-21A which is activated more readily by trypsin, and PAR2-21A tethering peptide stops gill bleeding just as trypsin. This finding provides evidence that trypsin cleaves a PAR2 member on thrombocyte surface. In conclusion, we believe that the gills are evolutionarily selected to produce trypsin to activate PAR2 on thrombocyte surface and protect the gills from bleeding. We also speculate that trypsin may also protect the fish from bleeding from other body injuries due to quick contact with the thrombocytes. Thus, this finding provides evidence for the role of trypsins in primary hemostasis in early vertebrates.


Methods in Cell Biology | 2011

Laser-Induced Thrombosis in Zebrafish

Pudur Jagadeeswaran; Maira Carrillo; Uvaraj P. Radhakrishnan; Surendra Kumar Rajpurohit; Seongcheol Kim

In the event of injury to the vasculature in vertebrate organisms bleeding is stopped by a defense mechanism called hemostasis. Even though biochemical studies characterized a number of factors, classical genetic methods have not been applied to study hemostasis. We introduced zebrafish as an animal model to study genetics of hemostasis. To conduct genetic studies of hemostasis, we required a global screening method to address all the factors of hemostasis such as those present in plasma, in platelets or those present in the endothelium. Therefore, we developed a global laser induced thrombosis method which can assay all these components. In this paper, we describe the principle of this method as well as provide the detailed protocol so this could be used as a screening tool to measure hemostasis in any laboratory.


Blood Cells Molecules and Diseases | 2010

Loss of GATA1 and gain of FLI1 expression during thrombocyte maturation.

Pudur Jagadeeswaran; Shuo Lin; Brant M. Weinstein; Angela Hutson; Seongcheol Kim

In this paper, we characterized expression of GATA1 and FLI1 gene promoters in thrombocytes of zebrafish transgenic lines, G1-GM2 and TG(fli1:EGFP)y1 that carry transgenes of GATA1 and FLI1 gene promoters driving GFP. We found two discrete populations of thrombocytes verified by morphology, labeled with GFP in both G1-GM2 and TG(fli1:EGFP)y1 lines: (1) the more intensely labeled GFP+ thrombocyte, and (2) the less intensely labeled GFP+ thrombocytes. The more intensely labeled GFP+ thrombocyte in G1-GM2 line and the less intensely labeled GFP+ thrombocytes in the TG(fli1:EGFP)y1 line corresponded to young thrombocytes. These results showed that young thrombocytes have higher GATA1 promoter activity, while mature thrombocytes have more FLI1 gene promoter transcription. This finding suggests that there is a gradual loss of GATA1 and gain of FLI1 expression as the thrombocytes mature, and this overexpression of FLI1 may help maintain the thrombocyte lineage. Furthermore, the presence of transcriptional factors similar to those found in megakaryocytes raises the possibility that vertebrate thrombocytes may be the forerunners of mammalian megakaryocytes and, therefore, could serve as a model to study megakaryocyte maturation.


Blood Cells Molecules and Diseases | 2014

Role of hepsin in factor VII activation in zebrafish.

Gauri Khandekar; Pudur Jagadeeswaran

Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, factor VII and in small amounts in its activated form, factor VIIa. However, the mechanism of initial generation of factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases factor VII activating protease and hepsin play a role in activating factor VII, however, it has remained controversial. In this paper we estimated the levels of factor VIIa and factor VII for the first time in zebrafish adult population and also reevaluated the role of the above two serine proteases in activating factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease and hepsin was performed followed by assaying for their effect on factor VIIa concentration and extrinsic coagulation as measured by the kinetic prothrombin time. Factor VII activating protease knockdown showed no change in kinetic prothrombin time and no effect on factor VIIa levels while hepsin knockdown increased the kinetic prothrombin time and significantly reduced the factor VIIa plasma levels. Our results thus indicate that hepsin plays a physiologically important role in factor VII activation and hemostasis in zebrafish.

Collaboration


Dive into the Pudur Jagadeeswaran's collaboration.

Top Co-Authors

Avatar

Seongcheol Kim

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gauri Khandekar

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Maira Carrillo

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vrinda Kulkarni

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lala Zafreen

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Hutson

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge