Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pui Cheng is active.

Publication


Featured researches published by Pui Cheng.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

James W. Wilson; C. M. Ott; K. Höner zu Bentrup; Rajee Ramamurthy; L. Quick; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; D. Fernandez; Emily Richter; Miti Shah; Michelle Kilcoyne; Lokesh Joshi; Mayra Nelman-Gonzalez; S. Hing; Macarena Parra; P. Dumars; Kelly Norwood; R. Bober; J. Devich; A. Ruggles; Carla Goulart; Mark Rupert; Louis S. Stodieck; P. Stafford; L. Catella; Michael J. Schurr

A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth.


Journal of Bacteriology | 2005

Differences in gene content between Salmonella enterica serovar enteritidis isolates and comparison to closely related serovars gallinarum and Dublin

Steffen Porwollik; Carlos A. Santiviago; Pui Cheng; Liliana Florea; S. Jackson; Michael McClelland

Salmonella enterica serovar Enteritidis is often transmitted into the human food supply through eggs of hens that appear healthy. This pathogen became far more prevalent in poultry following eradication of the fowl pathogen S. enterica serovar Gallinarum in the mid-20th century. To investigate whether changes in serovar Enteritidis gene content contributed to this increased prevalence, and to evaluate genetic heterogeneity within the serovar, comparative genomic hybridization was performed on eight 60-year-old and nineteen 10- to 20-year-old serovar Enteritidis strains from various hosts, using a Salmonella-specific microarray. Overall, almost all the serovar Enteritidis genomes were very similar to each other. Excluding two rare strains classified as serovar Enteritidis in the Salmonella reference collection B, only eleven regions of the serovar Enteritidis phage type 4 (PT4) chromosome (sequenced at the Sanger Center) were absent or divergent in any of the other serovar Enteritidis strains tested. The more recent isolates did not have consistent differences from 60-year-old field isolates, suggesting that no large genomic additions on a whole-gene scale were needed for serovar Enteritidis to become more prevalent in domestic fowl. Cross-hybridization of phage genes on the array with related genes in the examined genomes grouped the serovar Enteritidis isolates into two major lineages. Microarray comparisons of the sequenced serovar Enteritidis PT4 to isolates of the closely related serovars Dublin and Gallinarum (biovars Gallinarum and Pullorum) revealed several genomic areas that distinguished them from serovar Enteritidis and from each other. These differences in gene content could be useful in DNA-based typing and in understanding the different phenotypes of these related serovars.


PLOS ONE | 2008

Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

James W. Wilson; C. Mark Ott; Laura Quick; Richard Davis; Kerstin Höner zu Bentrup; Aurélie Crabbé; Emily Richter; Shameema Sarker; Jennifer Barrila; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; Miti Shah; Mayra Nelman-Gonzalez; Steve Hing; Macarena Parra; Paula Dumars; Kelly Norwood; Ramona Bober; Jennifer Devich; Ashleigh Ruggles; Autumn Cdebaca; Satro Narayan; Joseph G. Benjamin; Carla Goulart; Mark Rupert; Luke Catella

The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.


Journal of Bacteriology | 2005

Host Gene Expression Changes and DNA Amplification during Temperate Phage Induction

Jonathan G. Frye; Steffen Porwollik; Felisa Blackmer; Pui Cheng; Michael McClelland

Salmonella enterica serovar Typhimurium LT2 harbors four temperate prophages. The lytic cycle of these phages was induced with hydrogen peroxide or mitomycin C. Microarray analysis was used to monitor the increase in phage genome copy number and the changes in RNA expression. Phage gene transcription was classified temporally, and host genes that responded to hydrogen peroxide, mitomycin C, or phage induction were also identified. A region of the serovar Typhimurium LT2 host genome encompassing hundreds of genes, flanking the Fels-1 lambdoid prophage, was amplified manyfold during lytic induction, presumably due to Fels-1 runoff replication prior to excision, a phenomenon termed escape replication. An excisionase (xis) mutant of Fels-1 also induced escape replication but did not get packaged. Gifsy-1, a lambdoid prophage that does not normally produce escape replication, did so after deletion of either its integrase or excisionase genes. Escape replication is probably widespread; large regions of host genome amplification were also observed after phage induction in serovar Typhimurium strains SL1344 and 14028s at the suspected integration site of prophage genomes.


Mbio | 2013

Evolutionary Genomics of Salmonella enterica Subspecies

Prerak T. Desai; Steffen Porwollik; Fred Long; Pui Cheng; Aye Wollam; Sandra W. Clifton; George M. Weinstock; Michael McClelland

ABSTRACT Six subspecies are currently recognized in Salmonella enterica. Subspecies I (subspecies enterica) is responsible for nearly all infections in humans and warm-blooded animals, while five other subspecies are isolated principally from cold-blooded animals. We sequenced 21 phylogenetically diverse strains, including two representatives from each of the previously unsequenced five subspecies and 11 diverse new strains from S. enterica subspecies enterica, to put this species into an evolutionary perspective. The phylogeny of the subspecies was partly obscured by abundant recombination events between lineages and a relatively short period of time within which subspeciation took place. Nevertheless, a variety of different tree-building methods gave congruent evolutionary tree topologies for subspeciation. A total of 285 gene families were identified that were recruited into subspecies enterica, and most of these are of unknown function. At least 2,807 gene families were identified in one or more of the other subspecies that are not found in subspecies I or Salmonella bongori. Among these gene families were 13 new candidate effectors and 7 new candidate fimbrial clusters. A third complete type III secretion system not present in subspecies enterica (I) isolates was found in both strains of subspecies salamae (II). Some gene families had complex taxonomies, such as the type VI secretion systems, which were recruited from four different lineages in five of six subspecies. Analysis of nonsynonymous-to-synonymous substitution rates indicated that the more-recently acquired regions in S. enterica are undergoing faster fixation rates than the rest of the genome. Recently acquired AT-rich regions, which often encode virulence functions, are under ongoing selection to maintain their high AT content. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts. IMPORTANCE We have sequenced 21 new genomes which encompass the phylogenetic diversity of Salmonella, including strains of the previously unsequenced subspecies arizonae, diarizonae, houtenae, salamae, and indica as well as new diverse strains of subspecies enterica. We have deduced possible evolutionary paths traversed by this very important zoonotic pathogen and identified novel putative virulence factors that are not found in subspecies I. Gene families gained at the time of the evolution of subspecies enterica are of particular interest because they include mechanisms by which this subspecies adapted to warm-blooded hosts.


PLOS ONE | 2014

Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium.

Steffen Porwollik; Carlos A. Santiviago; Pui Cheng; Fred Long; Prerak T. Desai; Jennifer Fredlund; Shabarinath Srikumar; Cecilia A. Silva; Weiping Chu; Xin Chen; Rocío Canals; M. Megan Reynolds; Lydia M. Bogomolnaya; Christine Shields; Ping Cui; Jinbai Guo; Yi Zheng; Tiana Endicott-Yazdani; Hee-Jeong Yang; Aimee Maple; Yury Ragoza; Carlos J. Blondel; Camila Valenzuela; Helene Andrews-Polymenis; Michael McClelland

We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.


Cancer Research | 2010

High-throughput screening for salmonella avirulent mutants that retain targeting of solid tumors.

Nabil Arrach; Pui Cheng; Ming Zhao; Carlos A. Santiviago; Robert M. Hoffman; Michael McClelland

Salmonella has a natural ability to target a wide range of tumors in animal models. However, strains used for cancer therapy have generally been selected only for their avirulence rather than their tumor-targeting ability. To select Salmonella strains that are avirulent and yet efficient in tumor targeting, a necessary criterion for clinical applications, we measured the relative fitness of 41,000 Salmonella transposon insertion mutants growing in mouse models of human prostate and breast cancer. Two classes of potentially safe mutants were identified. Class 1 mutants showed reduced fitness in normal tissues and unchanged fitness in tumors (e.g., mutants in htrA, SPI-2, and STM3120). Class 2 mutants showed reduced fitness in tumors and normal tissues (e.g., mutants in aroA and aroD). In a competitive fitness assay in human PC-3 tumors growing in mice, class 1 mutant STM3120 had a fitness advantage over class 2 mutants aroA and aroD, validating the findings of the initial screening of a large pool of transposon mutants and indicating a potential advantage of class 1 mutants for delivery of cancer therapeutics. In addition, an STM3120 mutant successfully targeted tumors after intragastric delivery, opening up the oral route as an option for therapy administration.


Journal of Clinical Microbiology | 2008

Salmonella Serovar Identification Using PCR-Based Detection of Gene Presence and Absence

Nabil Arrach; Steffen Porwollik; Pui Cheng; Ann Cho; Fred Long; Sang-Ho Choi; Michael McClelland

ABSTRACT There are more than 2,500 known Salmonella serovars, and some of these can be further subclassified into groups of strains that differ profoundly in their gene content. We refer to these groups of strains as “genovars.” A compilation of comparative genomic hybridization data on 291 Salmonella isolates, including 250 S. enterica subspecies I strains from 32 serovars (52 genovars), was used to select a panel of 384 genes whose presence and absence among serovars and genovars was of potential taxonomic value. A subset of 146 genes was used for real-time PCR to successfully identify 12 serovars (16 genovars) in 24 S. enterica strains. A further subset of 64 genes was used to identify 8 serovars (9 genovars) in 12 multiplex PCR mixes on 11 S. enterica strains. These gene panels distinguish all tested S. enterica subspecies I serovars and their known genovars, almost all by two or more informative markers. Thus, a typing methodology based on these predictive genes would generally alert users if there is an error, an unexpected polymorphism, or a potential new genovar.


PLOS ONE | 2011

The Accuracy of Survival Time Prediction for Patients with Glioma Is Improved by Measuring Mitotic Spindle Checkpoint Gene Expression

Li Bie; Gang Zhao; Pui Cheng; Gaelle Rondeau; Steffen Porwollik; Yan Ju; Xiao-Qin Xia; Michael McClelland

Identification of gene expression changes that improve prediction of survival time across all glioma grades would be clinically useful. Four Affymetrix GeneChip datasets from the literature, containing data from 771 glioma samples representing all WHO grades and eight normal brain samples, were used in an ANOVA model to screen for transcript changes that correlated with grade. Observations were confirmed and extended using qPCR assays on RNA derived from 38 additional glioma samples and eight normal samples for which survival data were available. RNA levels of eight major mitotic spindle assembly checkpoint (SAC) genes (BUB1, BUB1B, BUB3, CENPE, MAD1L1, MAD2L1, CDC20, TTK) significantly correlated with glioma grade and six also significantly correlated with survival time. In particular, the level of BUB1B expression was highly correlated with survival time (p<0.0001), and significantly outperformed all other measured parameters, including two standards; WHO grade and MIB-1 (Ki-67) labeling index. Measurement of the expression levels of a small set of SAC genes may complement histological grade and other clinical parameters for predicting survival time.


International Journal of Medical Microbiology | 2013

A single step multiplex PCR for identification of six diarrheagenic E. coli pathotypes and Salmonella

Mudit Chandra; Pui Cheng; Gaelle Rondeau; Steffen Porwollik; Michael McClelland

E. coli is generally a commensal but includes some highly pathogenic strains carrying additional genes in plasmids and/or the chromosome. Based on these genes the pathogenic strains are divided into pathotypes including enteropathogenic (EPEC), enterohemorrhagic (EHEC), enterotoxigenic (ETEC), enteroaggregative (EAEC), enteroinvasive (EIEC) and diffusely adherent (DAEC) E. coli. Here, previously developed multiplex PCR strategies for these strains were integrated into one single step multiplex that differentiates all these E. coli pathotypes, usually based on multiple characteristic PCR products. This multiplex PCR works reliably for colony PCR. Two additional markers were added: one to detect most Enterobacteriacea, which acts as a positive control for successful PCR, and one to distinguish Salmonella. The multiplex correctly classified a set of 45 reference strains by colony PCR and 71 (45+26) strains by in silico PCR. It was then used to interrogate 44 clinical strains from bovine hosts resulting in detection of EAEC and DAEC determinants.

Collaboration


Dive into the Pui Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Long

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Qin Xia

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge