Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pui-Yan Kwok is active.

Publication


Featured researches published by Pui-Yan Kwok.


Nature Genetics | 2009

Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways.

Rajan P. Nair; Kristina Callis Duffin; Cynthia Helms; Jun Ding; Philip E. Stuart; David E. Goldgar; Johann E. Gudjonsson; Yun Li; Trilokraj Tejasvi; Bing Jian Feng; Andreas Ruether; Stefan Schreiber; Michael Weichenthal; Dafna D. Gladman; Proton Rahman; Steven J. Schrodi; Sampath Prahalad; Stephen L. Guthery; Judith Fischer; Wilson Liao; Pui-Yan Kwok; Alan Menter; G. Mark Lathrop; Carol A. Wise; Ann B. Begovich; John J. Voorhees; James T. Elder; Gerald G. Krueger; Anne M. Bowcock; Gonçalo R. Abecasis

Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 × 10−8). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-α and regulate NF-κB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.


PLOS Genetics | 2008

A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease Loci.

Ying Liu; Cynthia Helms; Wilson Liao; Lisa C. Zaba; Shenghui Duan; Jennifer M. Gardner; Carol A. Wise; Andrew Miner; Mary J. Malloy; Clive R. Pullinger; John P. Kane; Scott F. Saccone; Jane Worthington; Ian C Bruce; Pui-Yan Kwok; Alan Menter; James M Krueger; Anne Barton; Nancy L. Saccone; Anne M. Bowcock

A genome-wide association study was performed to identify genetic factors involved in susceptibility to psoriasis (PS) and psoriatic arthritis (PSA), inflammatory diseases of the skin and joints in humans. 223 PS cases (including 91 with PSA) were genotyped with 311,398 single nucleotide polymorphisms (SNPs), and results were compared with those from 519 Northern European controls. Replications were performed with an independent cohort of 577 PS cases and 737 controls from the U.S., and 576 PSA patients and 480 controls from the U.K.. Strongest associations were with the class I region of the major histocompatibility complex (MHC). The most highly associated SNP was rs10484554, which lies 34.7 kb upstream from HLA-C (P = 7.8×10−11, GWA scan; P = 1.8×10−30, replication; P = 1.8×10−39, combined; U.K. PSA: P = 6.9×10−11). However, rs2395029 encoding the G2V polymorphism within the class I gene HCP5 (combined P = 2.13×10−26 in U.S. cases) yielded the highest ORs with both PS and PSA (4.1 and 3.2 respectively). This variant is associated with low viral set point following HIV infection and its effect is independent of rs10484554. We replicated the previously reported association with interleukin 23 receptor and interleukin 12B (IL12B) polymorphisms in PS and PSA cohorts (IL23R: rs11209026, U.S. PS, P = 1.4×10−4; U.K. PSA: P = 8.0×10−4; IL12B:rs6887695, U.S. PS, P = 5×10−5 and U.K. PSA, P = 1.3×10−3) and detected an independent association in the IL23R region with a SNP 4 kb upstream from IL12RB2 (P = 0.001). Novel associations replicated in the U.S. PS cohort included the region harboring lipoma HMGIC fusion partner (LHFP) and conserved oligomeric golgi complex component 6 (COG6) genes on chromosome 13q13 (combined P = 2×10−6 for rs7993214; OR = 0.71), the late cornified envelope gene cluster (LCE) from the Epidermal Differentiation Complex (PSORS4) (combined P = 6.2×10−5 for rs6701216; OR 1.45) and a region of LD at 15q21 (combined P = 2.9×10−5 for rs3803369; OR = 1.43). This region is of interest because it harbors ubiquitin-specific protease-8 whose processed pseudogene lies upstream from HLA-C. This region of 15q21 also harbors the gene for SPPL2A (signal peptide peptidase like 2a) which activates tumor necrosis factor alpha by cleavage, triggering the expression of IL12 in human dendritic cells. We also identified a novel PSA (and potentially PS) locus on chromosome 4q27. This region harbors the interleukin 2 (IL2) and interleukin 21 (IL21) genes and was recently shown to be associated with four autoimmune diseases (Celiac disease, Type 1 diabetes, Graves disease and Rheumatoid Arthritis).


Nature Genetics | 1999

A general approach to single-nucleotide polymorphism discovery

Gabor T. Marth; Ian Korf; Mark Yandell; Raymond T. Yeh; Zhijie Gu; Hamideh Zakeri; Nathan O. Stitziel; LaDeana W. Hillier; Pui-Yan Kwok; Warren Gish

Single-nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and a resource for mapping complex genetic traits. The large volume of data produced by high-throughput sequencing projects is a rich and largely untapped source of SNPs (refs 2, 3, 4, 5). We present here a unified approach to the discovery of variations in genetic sequence data of arbitrary DNA sources. We propose to use the rapidly emerging genomic sequence as a template on which to layer often unmapped, fragmentary sequence data and to use base quality values to discern true allelic variations from sequencing errors. By taking advantage of the genomic sequence we are able to use simpler yet more accurate methods for sequence organization: fragment clustering, paralogue identification and multiple alignment. We analyse these sequences with a novel, Bayesian inference engine, POLYBAYES, to calculate the probability that a given site is polymorphic. Rigorous treatment of base quality permits completely automated evaluation of the full length of all sequences, without limitations on alignment depth. We demonstrate this approach by accurate SNP predictions in human ESTs aligned to finished and working-draft quality genomic sequences, a data set representative of the typical challenges of sequence-based SNP discovery.


Nature Genetics | 2009

Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis.

Rafael de Cid; Eva Riveira-Munoz; Patrick L.J.M. Zeeuwen; Jason Robarge; Wilson Liao; Emma N. Dannhauser; Emiliano Giardina; Philip E. Stuart; Rajan P. Nair; Cynthia Helms; Geòrgia Escaramís; Ester Ballana; Gemma Martín-Ezquerra; Martin den Heijer; Marijke Kamsteeg; Irma Joosten; Evan E. Eichler; Conxi Lázaro; Ramon M. Pujol; Lluís Armengol; Gonçalo R. Abecasis; James T. Elder; Giuseppe Novelli; John A.L. Armour; Pui-Yan Kwok; Anne M. Bowcock; Joost Schalkwijk; Xavier Estivill

Psoriasis is a common inflammatory skin disease with a prevalence of 2–3% in individuals of European ancestry. In a genome-wide search for copy number variants (CNV) using a sample pooling approach, we have identified a deletion comprising LCE3B and LCE3C, members of the late cornified envelope (LCE) gene cluster. The absence of LCE3B and LCE3C (LCE3C_LCE3B-del) is significantly associated (P = 1.38E–08) with risk of psoriasis in 2,831 samples from Spain, The Netherlands, Italy and the United States, and in a family-based study (P = 5.4E–04). LCE3C_LCE3B-del is tagged by rs4112788 (r 2 = 0.93), which is also strongly associated with psoriasis (P < 6.6E–09). LCE3C_LCE3B-del shows epistatic effects with the HLA-Cw6 allele on the development of psoriasis in Dutch samples and multiplicative effects in the other samples. LCE expression can be induced in normal epidermis by skin barrier disruption and is strongly expressed in psoriatic lesions, suggesting that compromised skin barrier function has a role in psoriasis susceptibility.


Nature | 2010

Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis

Sergio E. Baranzini; Joann Mudge; Jennifer C. van Velkinburgh; Pouya Khankhanian; Irina Khrebtukova; Neil Miller; Lu Zhang; Andrew D. Farmer; Callum J. Bell; Ryan W. Kim; Gregory D. May; Jimmy E. Woodward; Stacy J. Caillier; Joseph P. McElroy; Refujia Gomez; Marcelo J. Pando; Leonda E. Clendenen; Elena E. Ganusova; Faye D. Schilkey; Thiruvarangan Ramaraj; Omar Khan; Jim J. Huntley; Shujun Luo; Pui-Yan Kwok; Thomas D. Wu; Gary P. Schroth; Jorge R. Oksenberg; Stephen L. Hauser; Stephen F. Kingsmore

Monozygotic or ‘identical’ twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4+ lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among ∼3.6 million single nucleotide polymorphisms (SNPs) or ∼0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of ∼19,000 genes in CD4+ T cells. Only 2 to 176 differences in the methylation of ∼2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to ∼800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.


Nature Genetics | 2008

Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus

Stacy L. Musone; Kimberly E. Taylor; Timothy T. Lu; Joanne Nititham; Ricardo C. Ferreira; Ward Ortmann; Nataliya Shifrin; Michelle Petri; M. Ilyas Kamboh; Susan Manzi; Michael F. Seldin; Peter K. Gregersen; Timothy W. Behrens; Averil Ma; Pui-Yan Kwok; Lindsey A. Criswell

The TNFAIP3 (tumor necrosis factor alpha–induced protein 3) gene encodes a ubiquitin editing enzyme, A20, that restricts NF-κB–dependent signaling and prevents inflammation. We show that three independent SNPs in the TNFAIP3 region (rs13192841, rs2230926 and rs6922466) are associated with systemic lupus erythematosus (SLE) among individuals of European ancestry. These findings provide critical links between A20 and the etiology of SLE.


Nature Genetics | 2009

Narcolepsy is strongly associated with the T-cell receptor alpha locus

Joachim Hallmayer; Juliette Faraco; Ling Lin; Stephanie Hesselson; Juliane Winkelmann; Minae Kawashima; Geert Mayer; Giuseppe Plazzi; Sona Nevsimalova; Patrice Bourgin; Sheng Seung-Chul Hong; Yutaka Honda; Makoto Honda; Birgit Högl; William T. Longstreth; Jacques Montplaisir; David Kemlink; Mali Einen; Justin Chen; Stacy L. Musone; Matthew Akana; Taku Miyagawa; Jubao Duan; Alex Desautels; Christine Erhardt; Per Egil Hesla; Francesca Poli; Birgit Frauscher; Jong-Hyun Jeong; Sung-Pil Lee

Narcolepsy with cataplexy, characterized by sleepiness and rapid onset into REM sleep, affects 1 in 2,000 individuals. Narcolepsy was first shown to be tightly associated with HLA-DR2 (ref. 3) and later sublocalized to DQB1*0602 (ref. 4). Following studies in dogs and mice, a 95% loss of hypocretin-producing cells in postmortem hypothalami from narcoleptic individuals was reported. Using genome-wide association (GWA) in Caucasians with replication in three ethnic groups, we found association between narcolepsy and polymorphisms in the TRA@ (T-cell receptor alpha) locus, with highest significance at rs1154155 (average allelic odds ratio 1.69, genotypic odds ratios 1.94 and 2.55, P < 10−21, 1,830 cases, 2,164 controls). This is the first documented genetic involvement of the TRA@ locus, encoding the major receptor for HLA-peptide presentation, in any disease. It is still unclear how specific HLA alleles confer susceptibility to over 100 HLA-associated disorders; thus, narcolepsy will provide new insights on how HLA–TCR interactions contribute to organ-specific autoimmune targeting and may serve as a model for over 100 other HLA-associated disorders.


Nature Genetics | 2003

A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis

Cynthia Helms; Li Cao; James G. Krueger; Ellen M. Wijsman; Francesca Chamian; Derek Gordon; Michael P. Heffernan; Jil A. Wright Daw; Jason Robarge; Jurg Ott; Pui-Yan Kwok; Alan Menter; Anne M. Bowcock

Psoriasis (OMIM 177900) is a chronic inflammatory skin disorder of unknown pathogenesis affecting ∼2% of the Western population. It occurs more frequently in individuals with human immunodeficiency virus, and 20–30% of individuals with psoriasis have psoriatic arthritis. Psoriasis is associated with HLA class I alleles, and previous linkage analysis by our group identified a second psoriasis locus at 17q24–q25 (PSORS2; ref. 7). Linkage to this locus was confirmed with independent family sets. Additional loci have also been proposed to be associated with psoriasis. Here we describe two peaks of strong association with psoriasis on chromosome 17q25 separated by 6 Mb. Associated single-nucleotide polymorphisms (SNPs) in the proximal peak lie in or near SLC9A3R1 (also called EBP50 and NHERF1) and NAT9, a new member of the N-acetyltransferase family. SLC9A3R1 is a PDZ domain–containing phosphoprotein that associates with members of the ezrin-radixin-moesin family and is implicated in diverse aspects of epithelial membrane biology and immune synapse formation in T cells. The distal peak of association is in RAPTOR (p150 target of rapamycin (TOR)-scaffold protein containing WD-repeats). Expression of SLC9A3R1 is highest in the uppermost stratum Malpighi of psoriatic and normal skin and in inactive versus active T cells. A disease-associated SNP lying between SLC9A3R1 and NAT9 leads to loss of RUNX1 binding. This is the second example of loss of a RUNX1 binding site associated with susceptibility to an autoimmune disease. It also suggests defective regulation of SLC9A3R1 or NAT9 by RUNX1 as a susceptibility factor for psoriasis.


Nature Biotechnology | 2012

Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly.

Ernest T. Lam; Alex Hastie; Chin Lin; Dean Ehrlich; Somes K. Das; Mike Austin; Paru Deshpande; Niranjan Nagarajan; Ming Xiao; Pui-Yan Kwok

We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.


Aging Cell | 2009

Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity.

Ludmila Pawlikowska; Donglei Hu; Scott Huntsman; Andrew Sung; Catherine Chu; Justin Chen; Alexander H. Joyner; Nicholas J. Schork; Wen Chi Hsueh; Alex P. Reiner; Bruce M. Psaty; Gil Atzmon; Nir Barzilai; Steven R. Cummings; Warren S. Browner; Pui-Yan Kwok; Elad Ziv

The insulin/IGF1 signaling pathways affect lifespan in several model organisms, including worms, flies and mice. To investigate whether common genetic variation in this pathway influences lifespan in humans, we genotyped 291 common variants in 30 genes encoding proteins in the insulin/IGF1 signaling pathway in a cohort of elderly Caucasian women selected from the Study of Osteoporotic Fractures (SOF). The cohort included 293 long‐lived cases (lifespan ≥ 92 years (y), mean ± standard deviation (SD) = 95.3 ± 2.2y) and 603 average‐lifespan controls (lifespan ≤ 79y, mean = 75.7 ± 2.6y). Variants were selected for genotyping using a haplotype‐tagging approach. We found a modest excess of variants nominally associated with longevity. Nominally significant variants were then replicated in two additional Caucasian cohorts including both males and females: the Cardiovascular Health Study and Ashkenazi Jewish Centenarians. An intronic single nucleotide polymorphism in AKT1, rs3803304, was significantly associated with lifespan in a meta‐analysis across the three cohorts (OR = 0.78 95%CI = 0.68–0.89, adjusted P = 0.043); two intronic single nucleotide polymorphisms in FOXO3A demonstrated a significant lifespan association among women only (rs1935949, OR = 1.35, 95%CI = 1.15–1.57, adjusted P = 0.0093). These results demonstrate that common variants in several genes in the insulin/IGF1 pathway are associated with human lifespan.

Collaboration


Dive into the Pui-Yan Kwok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annie Poon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T. Lawton

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Catherine Chu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge