Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pumin Zhang is active.

Publication


Featured researches published by Pumin Zhang.


Cell | 1995

Mice Lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control

Chu-Xia Deng; Pumin Zhang; J. Wade Harper; Stephen J. Elledge; Philip Leder

p21CIP1/WAF1 is a CDK inhibitor regulated by the tumor suppressor p53 and is hypothesized to mediate G1 arrest. p53 has been suggested to derive anti-oncogenic properties from this relationship. To test these notions, we created mice lacking p21CIP1/WAF1. They develop normally and (unlike p53-/- mice) have not developed spontaneous malignancies during 7 months of observation. Nonetheless, p21-/- embryonic fibroblasts are significantly deficient in their ability to arrest in G1 in response to DNA damage and nucleotide pool perturbation. p21-/- cells also exhibit a significant growth alteration in vitro, achieving a saturation density as high as that observed in p53-/- cells. In contrast, other aspects of p53 function, such as thymocytic apoptosis and the mitotic spindle checkpoint, appear normal. These results establish the role of p21CIP1/WAF1 in the G1 checkpoint, but suggest that the anti-apoptotic and the anti-oncogenic effects of p53 are more complex.


Science | 1995

p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells.

Susan B. Parker; Gregor Eichele; Pumin Zhang; A. Rawls; A. T. Sands; Allan Bradley; E. N. Olson; J. W. Harper; Stephen J. Elledge

Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent kinase inhibitor (CKI) p21Cip1 is transcriptionally regulated by p53 and can induce growth arrest. CKIs are therefore potential mediators of developmental control of cell proliferation. The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-independent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate p21 expression in 10T1/2 cells, p21 was expressed in myogenic cells of mice lacking the genes encoding MyoD and myogenin, demonstrating that p21 expression does not require these transcription factors. The p21 protein may function during development as an inducible growth inhibitor that contributes to cell cycle exit and differentiation.


The EMBO Journal | 2008

The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C

Valeria Facchinetti; Weiming Ouyang; Hua Wei; Nelyn Soto; Adam S. Lazorchak; Christine M. Gould; Carolyn Lowry; Alexandra C. Newton; Yuxin Mao; Robert Qing Miao; William C. Sessa; Jun Qin; Pumin Zhang; Bing Su; Estela Jacinto

The target of rapamycin (TOR), as part of the rapamycin‐sensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl‐terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination‐mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis.


Molecular Cell | 2008

Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast.

Jinglan Zhang; Xiaomin Shi; Yehua Li; Beom Jun Kim; Junling Jia; Zhiwei Huang; Tao Yang; Xiaoyong Fu; Sung Yun Jung; Yi Wang; Pumin Zhang; Seong-Tae Kim; Xuewen Pan; Jun Qin

Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis

Min Li; Xiao Fang; Darren J. Baker; Linjie Guo; Xue Gao; Zhubo Wei; Shuhua Han; Jan M. van Deursen; Pumin Zhang

The spindle assembly checkpoint (SAC) is essential for proper sister chromatid segregation. Defects in this checkpoint can lead to chromosome missegregation and aneuploidy. An increasing body of evidence suggests that aneuploidy can play a causal role in tumorigenesis. However, mutant mice that are prone to aneuploidy have only mild tumor phenotypes, suggesting that there are limiting factors in the aneuploidy-induced tumorigenesis. Here we provide evidence that p53 is such a limiting factor. We show that aneuploidy activates p53 and that loss of p53 drastically accelerates tumor development in two independent aneuploidy models. The p53 activation depends on the ataxia-telangiectasia mutated (ATM) gene product and increased levels of reactive oxygen species. Thus, the ATM-p53 pathway safeguards not only DNA damage but also aneuploidy.


Journal of The American Society of Nephrology | 2008

GUDMAP: The Genitourinary Developmental Molecular Anatomy Project

Andrew P. McMahon; Bruce J. Aronow; Duncan Davidson; Jamie A. Davies; Kevin W. Gaido; Sean M. Grimmond; James L. Lessard; Melissa H. Little; S. Steven Potter; Elizabeth L. Wilder; Pumin Zhang

In late 2004, an International Consortium of research groups were charged with the task of producing a high-quality molecular anatomy of the developing mammalian urogenital tract (UGT). Given the importance of these organ systems for human health and reproduction, the need for a systematic molecular and cellular description of their developmental programs was deemed a high priority. The information obtained through this initiative is anticipated to enable the highest level of basic and clinical research grounded on a 21st-century view of the developing anatomy. There are three components to the Genitourinary Developmental Molecular Anatomy Project GUDMAP; all of these are intended to provide resources that support research on the kidney and UGT. The first provides ontology of the cell types during UGT development and the molecular hallmarks of those cells as discerned by a variety of procedures, including in situ hybridization, transcriptional profiling, and immunostaining. The second generates novel mouse strains. In these strains, cell types of particular interest within an organ are labeled through the introduction of a specific marker into the context of a gene that exhibits appropriate cell type or structure-specific expression. In addition, the targeting construct enables genetic manipulation within the cell of interest in many of the strains. Finally, the information is annotated, collated, and promptly released at regular intervals, before publication, through a database that is accessed through a Web portal. Presented here is a brief overview of the Genitourinary Developmental Molecular Anatomy Project effort.


Biology of Reproduction | 2012

Temporal Differences in Granulosa Cell Specification in the Ovary Reflect Distinct Follicle Fates in Mice

Lindsey Mork; Danielle M. Maatouk; Jill A. McMahon; Jin Jin Guo; Pumin Zhang; Andrew P. McMahon; Blanche Capel

ABSTRACT The embryonic origins of ovarian granulosa cells have been a subject of debate for decades. By tamoxifen-induced lineage tracing of Foxl2-expressing cells, we show that descendants of the bipotential supporting cell precursors in the early gonad contribute granulosa cells to a specific population of follicles in the medulla of the ovary that begin to grow immediately after birth. These precursor cells arise from the proliferative ovarian surface epithelium and enter mitotic arrest prior to upregulating Foxl2. Granulosa cells that populate the cortical primordial follicles activated in adult life derive from the surface epithelium perinatally, and enter mitotic arrest at that stage. Ingression from the surface epithelium dropped to undetectable levels by Postnatal Day 7, when most surviving oocytes were individually encapsulated by granulosa cells. These findings add complexity to the standard model of sex determination in which the Sertoli and granulosa cells of the adult testis and ovary directly stem from the supporting cell precursors of the bipotential gonad.


Nature Cell Biology | 2008

The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory

Min Li; Yong Hyun Shin; Lingfei Hou; Xingxu Huang; Zhubo Wei; Eric Klann; Pumin Zhang

The anaphase promoting complex (APC) or cyclosome is a multi-subunit E3 ubiquitin ligase. Cdc20 (fizzy (fzy)) or p55CDC, and Cdh1 (Hct1, srw1 or fizzy-related 1 (fzr1)) encode two adaptor proteins that bring substrates to the APC. Both APC–Cdc20 and APC–Cdh1 have been implicated in the control of mitosis through mediating ubiquitination of mitotic regulators, such as cyclin B1 and securin. However, the importance of Cdh1 function in vivo and whether its function is redundant with that of Cdc20 are unclear. Here we have analysed mice lacking Cdh1. We show that Cdh1 is essential for placental development and that its deficiency causes early lethality. Cdh1-deficient mouse embryonic fibroblasts (MEFs) entered replicative senescence prematurely because of stabilization of Ets2 and subsequent activation of p16Ink4a expression. These results have uncovered an unexpected role of the APC in maintaining replicative lifespan of MEFs. Further, Cdh1 heterozygous mice show defects in late-phase long-term potentiation (L-LTP) in the hippocampus and are deficient in contextual fear-conditioning, suggesting that Cdh1 has a role in learning and memory.


PLOS ONE | 2010

The Fat Mass and Obesity Associated Gene FTO Functions in the Brain to Regulate Postnatal Growth in Mice

Xue Gao; Yong Hyun Shin; Min Li; Fei Wang; Qiang Tong; Pumin Zhang

FTO (fat mass and obesity associated) was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism) located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II) and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth.


Cancer Cell | 2017

FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase.

Zejuan Li; Hengyou Weng; Rui Su; Xiaocheng Weng; Zhixiang Zuo; Chenying Li; Huilin Huang; Sigrid Nachtergaele; Lei Dong; Chao Hu; Xi Qin; Lichun Tang; Yungui Wang; Gia-Ming Hong; Hao Huang; Xiao Wang; Ping Chen; Sandeep Gurbuxani; Stephen Arnovitz; Yuanyuan Li; Shenglai Li; Jennifer Strong; Mary Beth Neilly; Richard A. Larson; Xi Jiang; Pumin Zhang; Jie Jin; Chuan He; Jianjun Chen

N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.

Collaboration


Dive into the Pumin Zhang's collaboration.

Top Co-Authors

Avatar

J. Philippe York

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Elledge

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Han Lin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiao Fang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhubo Wei

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Qin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lingna Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Harper

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge