Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Punchapat Sojikul is active.

Publication


Featured researches published by Punchapat Sojikul.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A plant signal peptide–hepatitis B surface antigen fusion protein with enhanced stability and immunogenicity expressed in plant cells

Punchapat Sojikul; Norene A. Buehner; Hugh S. Mason

The use of transgenic plants to express orally immunogenic protein antigens is an emerging strategy for vaccine biomanufacturing and delivery. This concept has particular suitability for developing countries. One factor that has limited the development of this technology is the relatively modest levels of accumulation of some antigenic proteins in plant tissues. We used fusion protein design to improve expression of the hepatitis B surface antigen (HBsAg) by attempting to mimic the process of HBsAg targeting to the endoplasmic reticulum of human liver cells during hepatitis B virus infection. We created a gene encoding a recombinant HBsAg modified to contain a plant signal peptide fused to its amino terminus. The signal peptide from soybean vegetative storage protein vspA (VSPαS) directed endoplasmic reticulum targeting of HBsAg in plant cells, but was not cleaved and resulted in enhanced VSPαS-HBsAg fusion accumulation. This product was more stable and presented the protective “a” antigenic determinant to significantly higher levels than unmodified native HBsAg expressed in plant cells. It also showed a greater extent of intermolecular disulfide bond formation and formation of virus-like particles. Moreover, VSPαS-HBsAg stimulated higher levels of serum IgG than native HBsAg when injected into mice. We conclude that HBsAg tolerates a polypeptide fusion at the amino terminus and that VSPαS-HBsAg is an improved antigen for plant-based expression of a subunit vaccine for hepatitis B virus.


Molecular Biotechnology | 2013

Computational Identification of MicroRNAs and Their Targets in Cassava (Manihot esculenta Crantz.)

Onsaya Patanun; Manassawe Lertpanyasampatha; Punchapat Sojikul; Unchera Viboonjun; Jarunya Narangajavana

MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.


Biochimica et Biophysica Acta | 2012

A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex

Jaruwan Siritapetawee; Kanjana Thumanu; Punchapat Sojikul; Sompong Thammasirirak

A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis.


Physiologia Plantarum | 2010

AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation.

Punchapat Sojikul; Panida Kongsawadworakul; Unchera Viboonjun; Jittrawan Thaiprasit; Burapat Intawong; Jarunya Narangajavana; Mom Rajawong Jisnuson Svasti

Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis.


Biologia Plantarum | 2014

Involvement of miR164- and miR167-mediated target gene expressions in responses to water deficit in cassava

P. Phookaew; S. Netrphan; Punchapat Sojikul; Jarunya Narangajavana

Cassava (Manihot esculenta Crantz) is an important crop and it is significantly affected by water stress. The computational analysis of cis-regulatory elements in promoter regions of 21 drought-responsive miRNA gene families and 35 miRNA-target genes in cassava indicated some elements relevant to drought stress responses. To investigate the role of miRNAs and target genes in responses to a water deficit in cassava in more detail, in vitro plantlets were subjected to an imitated water deficit by 40 % polyethylene glycol. Using RT-qPCR, the differential expression of the cassava miR164/MesNAC and miR167/MesARF6/8 were observed to be associated with changes in the leaf shape, stomatal closure, and relative water content. The modified 5′-RNA ligase-mediated rapid amplification of cDNA-end (5’RLM-RACE) experiment confirmed MesNAC and MesARF8 as the in vivo-target genes of miR164 and miR167, respectively, in cassava leaf. The possible functions of miR164 and miR167-target genes in response to water deficit are discussed.


Tropical Plant Biology | 2012

RIKEN Cassava Initiative: Establishment of a Cassava Functional Genomics Platform

Yoshinori Utsumi; Tetsuya Sakurai; Yoshimi Umemura; Sarah Ayling; Manabu Ishitani; Jarunya Narangajavana; Punchapat Sojikul; Kanokporn Triwitayakorn; Minami Matsui; Ri-ichiroh Manabe; Kazuo Shinozaki; Motoaki Seki

Cassava (Manihot esculenta Crantz) is an important tropical root crop that provides food security and income generation for many farmers. Cassava ranks as the third most important source of calories in the tropics and provides sustenance to 800 million people worldwide. Cassava is also an efficient source of modified starch and bioethanol. In spite of the many advantages and high potential of cassava, the research community lacks functional genomic resources. Therefore, RIKEN has been working to establish a cassava functional genomics platform, which includes full-length cDNAs, DNA microarrays, transformation capabilities, and a searchable database in collaboration with the International Center for Tropical Agriculture (CIAT) of Colombia and Mahidol University of Thailand. In this review, we summarize the present status and future perspectives of our cassava functional genomic approaches.


Plant Molecular Biology | 2015

Genome-wide analysis reveals phytohormone action during cassava storage root initiation.

Punchapat Sojikul; Treenut Saithong; Saowalak Kalapanulak; Nuttapat Pisuttinusart; Siripan Limsirichaikul; Maho Tanaka; Yoshinori Utsumi; Tetsuya Sakurai; Motoaki Seki; Jarunya Narangajavana

Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N6-benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.


Plant Physiology and Biochemistry | 2015

Biochemical characterization of a new glycosylated protease from Euphorbia cf. lactea latex

Jaruwan Siritapetawee; Punchapat Sojikul; Sompong Klaynongsruang

A dimeric protease designated as EuP-82 was purified from Euphorbia cf. lactea latex. Since its proteolytic activity was inhibited by a serine protease specific inhibitor (PMSF), EuP-82 was classified as a serine protease. N-glycan deglycosylation tests revealed that EuP-82 was a glycosylated protein. MALDI-TOF MS showed that EuP-82 was a homodimer, which was its active form. The optimal conditions for fibrinogenolytic activity were at pH 11 and 35 °C. EuP-82 enzyme had broad range of pH stability from 4 to 12. Moreover, the enzyme was still active in the presence of reducing agent (β-mercaptoethanol). EuP-82 was a proline-rich enzyme (about 20.69 mol%). Increased proline production can be found in higher plants in response to both biotic and abiotic stresses, high proline in the molecule of EuP-82 might stabilize its activity, structure and folding. Based on the N-terminal amino acid sequences and peptide mass fingerprint (PMF) of EuP-82, the enzyme was identified as a new serine protease. The digested products from EuP-82 cleavage of human fibrinogen were analyzed by SDS-PAGE and PMF. The results confirmed that EuP-82 could digest all subunits of human fibrinogen. EuP-82 cleaved fibrinogen with a Michaelis constant (Km) of 3.30 ± 0.26 μM; a maximal velocity (Vmax) of 400.9 ± 0.85 ng min(-1); and a catalytic efficiency (Vmax/Km) of 121.5 ± 9.25 ng μM(-1) min(-1). EuP-82 has potential for use in medicinal treatment, for example thrombosis, since the enzyme had fibrinogenolytic activity and high stability.


Journal of Biotechnology | 2012

Arabidopsis-derived shrimp viral-binding protein, PmRab7 can protect white spot syndrome virus infection in shrimp

Chonprakun Thagun; Jiraporn Srisala; Kallaya Sritunyalucksana; Jarunya Narangajavana; Punchapat Sojikul

White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industrys need for an in-feed supplement against white spot syndrome infection.


Journal of Elastomers and Plastics | 2016

Polylactic acid glycolysate as a cross-linker for epoxidized natural rubber Effect of cross-linker molecular weight

Phrutsadee Sukpuang; Mantana Opaprakasit; Atitsa Petchsuk; Pramuan Tangboriboonrat; Punchapat Sojikul; Pakorn Opaprakasit

Hydroxyl-capped polylactic acid (PLA) oligomers are prepared by glycolysis reaction of PLA with ethylene glycol (EG) and used as a macromolecular cross-linker for epoxidized natural rubber (ENR). The glycolyzed PLA (GPLA) with three different molecular weights (2000, 10,000, and 44,000 g mol−1) are prepared by varying the glycolysis conditions. Effects of GPLA chain lengths and GPLA/ENR feed ratios on cross-linking efficiency, chemical structures, and physical properties of the cured products are investigated. The cross-linking efficiency is examined using a moving die rheometer, solvent fractionation, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Optimum GPLA/ENR compositions for the curing reaction range from 20 wt% to 33 wt%, depending on the GPLA chain length. Because of their biodegradability, biocompatibility, and the ability to tune up their structures and properties, the cured rubber materials have high potential for use in various biomedical applications.

Collaboration


Dive into the Punchapat Sojikul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaruwan Siritapetawee

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Utsumi

Akita Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Atitsa Petchsuk

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge