Puneet Kumar Singh
Maharshi Dayanand University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Puneet Kumar Singh.
Biotechnology Journal | 2016
Chiranjib Banerjee; Puneet Kumar Singh; Pratyoosh Shukla
Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio‐engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy.
Frontiers in Plant Science | 2016
Vishal Kumar; Mehak Baweja; Puneet Kumar Singh; Pratyoosh Shukla
Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant–microbe interaction plays an important role to balance the ecosystem. The present review explores plant–microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.
Frontiers in Microbiology | 2016
Jahangir Imam; Puneet Kumar Singh; Pratyoosh Shukla
Deciphering plant–microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various ‘omics’ tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant–microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.
Frontiers in Microbiology | 2016
Mehak Baweja; Rameshwar Tiwari; Puneet Kumar Singh; Lata Nain; Pratyoosh Shukla
A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10–70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.
Frontiers in Microbiology | 2017
Ruby Yadav; Puneet Kumar Singh; Anil Kumar Puniya; Pratyoosh Shukla
Prebiotics are the non-digestible carbohydrate, which passes through the small intestine into unmetabolized form, reaches the large intestine and undergoes fermentation by the colonic bacteria thus; prebiotics stimulate the growth of probiotic bacteria. Further, bile salt hydrolase (BSH) is an enzyme that catalyses the deconjugation of bile salt, so it has enormous potential toward utilizing such capability of Lactobacillus plantarum RYPR1 toward detoxifying through BSH enzyme activity. In the present study, six isolates of Lactobacillus were evaluated for the co-aggregation assay and the isolate Lactobacillus plantarum RYPR1 was further selected for studies of prebiotic utilization, catalytic interactions and molecular docking. The prebiotic utilization ability was assessed by using commercially available prebiotics lactulose, inulin, xylitol, raffinose, and oligofructose P95. The results obtained revealed that RYPR1 is able to utilize these probiotics, maximum with lactulose by showing an increase in viable cell count (7.33 ± 0.02 to 8.18 ± 0.08). In addition, the molecular docking of BSH from Lactobacillus plantarum RYPR1 was performed which revealed the binding energy –4.42 and 7.03 KJ/mol. This proves a considerably good interactions among BSH and its substrates like Taurocholic acid (–4.42 KJ/mol) and Glycocholic acid (–7.03 KJ/mol). These results from this study establishes that Lactobacillus plantarum RYPR1 possesses good probiotic effects so it could be used for such applications. Further, molecular dynamics simulations were used to analyze the dynamic stability of the of modeled protein to stabilize it for further protein ligand docking and it was observed that residues Asn12, Ile8, and Leu6 were interacting among BSH and its substrates, i.e., Taurocholic acid and Lys88 and Asp126 were interacting with Glycocholic acid. These residues were interacting when the docking was carried out with stabilized BSH protein structure, thus, these residues may have a vital role in stabilizing the binding of the ligands with the protein.
Archive | 2016
Mehak Baweja; Puneet Kumar Singh; Pratyoosh Shukla
Metagenomics provides the opportunity to uncover many unculturable extremophilic microorganisms, which represent majority of the planet’s biological diversity and are being utilized in industries to further furnish industrial process and products. This strategy has resulted in the isolation of novel biocatalysts and bioactive molecules. Here in this chapter, we will review various strategies for manipulating enzyme attributes like its activity, stability, inhibition, designing novel substrates, and substrate-specific binding. We have also recapitulated the idea of functional proteomics and systems biology approach in protein engineering.
Archive | 2013
Jahangir Imam; Puneet Kumar Singh; Pratyoosh Shukla
Biological hydrogen production is one of the most imperative and demanding areas of research and technology development as a clean, efficient, and sustainable energy option to be considered as imminent fuel. The successful biohydrogen production needs technology improvement, use of updated microbial technologies to generate, and developing innovative proficient methods of biohydrogen production. This review explains the various possibilities toward the advancement of biohydrogen production methods, microbial technology involved in different methods with their benefits and shortcomings. It also spotlights on the avenues for enhancement in biohydrogen production and the future prospects of exploiting biohydrogen as prominent biofuel.
3 Biotech | 2017
Vishal Anand; Puneet Kumar Singh; Chiranjib Banerjee; Pratyoosh Shukla
AbstractBiofuels are the promising sources which are produced by various microalgae or in the form of metabolic by-products from organic or food waste products. Microalgae have been widely reported for the production of biofuels since these have a high storage of lipids as triacylglycerides, which can mainly be converted into biofuels. Recently, products such as biodiesel, bioethanol and biogas have renewed the interest toward the microalgae. The proteomics alone will not pave the way toward finding an ideal alga which will fulfill the current energy demands, but a combined approach of proteomics, genomics and bioinformatics can be pivotal for a sustainable solution. The present review emphasizes various technologies currently involved in algal proteomics for the efficient production of biofuels.
Archive | 2015
Chiranjib Banerjee; Rajib Bandopadhyay; Puneet Kumar Singh; Harsh Kumar Agrawal; Pratyoosh Shukla
Green unicellular microalgae increase their biomass content by the capability of entrapping CO2 for photosynthesis and are crucial for important value product. Negative zeta value is imparted the presence of COOH and NH2 groups. This review will give a detailing toward the forces that are responsible for making alga stable in a solution phase. Beside this, it also explains the various possibilities toward the recent advancement of bioharvesting in terms of technological aspects.
Microbial Biodegradation and Bioremediation | 2014
Puneet Kumar Singh; Jahangir Imam; Pratyoosh Shukla
Interdisciplinary investigation of processes involved in bioremediation is latest drift toward finding novel ways and schemes to improve the conventional treatment of toxic compounds with microorganisms. Though microorganisms are being genetically modified to increase their efficiency, but time and funds are always remains matter of concern when it comes to implement idea in a larger picture. In silico methods, include different mathematical models, modeling of metabolism, genomics, proteomics and biodegradation pathways which are being implemented in the bioremediation process for effectual outcome. Role of biological databases in building mathematical model for bioremediation. Role of docking process in the screening of best interaction of pollutant and its enzyme which degrades it. It reduces the samples to be tested in wet lab.