Pung-Pung Hwang
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pung-Pung Hwang.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011
Pung-Pung Hwang; Tsung-Han Lee; Li Yih Lin
Fish encounter harsh ionic/osmotic gradients on their aquatic environments, and the mechanisms through which they maintain internal homeostasis are more challenging compared with those of terrestrial vertebrates. Gills are one of the major organs conducting the internal ionic and acid-base regulation, with specialized ionocytes as the major cells carrying out active transport of ions. Exploring the iono/osmoregulatory mechanisms in fish gills, extensive literature proposed several models, with many conflicting or unsolved issues. Recent studies emerged, shedding light on these issues with new opened windows on other aspects, on account of available advanced molecular/cellular physiological approaches and animal models. Respective types of ionocytes and ion transporters, and the relevant regulators for the mechanisms of NaCl secretion, Na(+) uptake/acid secretion/NH(4)(+) excretion, Ca(2+) uptake, and Cl(-) uptake/base secretion, were identified and functionally characterized. These new ideas broadened our understanding of the molecular/cellular mechanisms behind the functional modification/regulation of fish gill ion transport during acute and long-term acclimation to environmental challenges. Moreover, a model for the systematic and local carbohydrate energy supply to gill ionocytes during these acclimation processes was also proposed. These provide powerful platforms to precisely study transport pathways and functional regulation of specific ions, transporters, and ionocytes; however, very few model species were established so far, whereas more efforts are needed in other species.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2008
Yung Che Tseng; Pung-Pung Hwang
A sufficient and timely energy supply is a prerequisite for the operation of iono- and osmoregulatory mechanisms in fish. Measurements of whole-fish or isolated-gill (or other organs) oxygen consumption have demonstrated regulation of the energy supply during acclimation to different osmotic environments, and such regulation is dependent on species, the situation of acclimation or acclimatization, and life habits. Carbohydrate metabolism appears to play a major role in the energy supply for iono- and osmoregulation, and the liver is the major source supplying carbohydrate metabolites to osmoregulatory organs. Compared with carbohydrates, the roles of lipids and proteins remain largely unclear. Energy metabolite translocation was recently found to occur between fish gill ionocytes and neighboring glycogen-rich (GR) cells, indicating the physiological significance of a local energy supply for gill ion regulatory mechanisms. Spatial and temporal relationships between the liver and other osmoregulatory and non-osmoregulatory organs in partitioning the energy supply for ion regulatory mechanisms during salinity challenges were also proposed. A novel glucose transporter was found to specifically be expressed and function in gill ionocytes, providing the first cue for investigating energy translocation among gill cells. Advanced molecular physiological approaches can be used to examine energy metabolism relevant to a particular cell type (e.g., gill ionocytes), and functional genomics may also provide another powerful approach to explore new metabolic pathways related to fish ion regulation.
Marine Biology | 1989
Pung-Pung Hwang; C. M. Sun; S. M. Wu
Changes of plasma osmolality, chloride concentration and gill Na−K-ATPase activity in tilapia Oreochromis mossambicus (obtained from Tainan Fish Culture Station of Taiwan Fisheries Research Institute, 1987) during seawater acclimation were examined. Three experiments were performed. (1) Freshwater (FW) to 30‰ salinity seawater (SW): plasma osmolality and chloride rose violently immediately post-transfer. At 6 h, gill Na−K-ATPase activity began to increase but most fish died from excessive plasma osmolality and Cl. (2) FW to 20‰ salinity SW: plasma osmolality and chloride increased immediately post-transfer, but more slowly than in (1), and began to decrease at 24 h. However it was not until 12 h post-transfer that gill Na−K-ATPase activity rose slowly. (3) FW to 20‰ salinity SW for 24 h, then to 30‰ salinity SW: after transfer to 30‰ salinity, plasma osmolality and chloride showed only a small increase initially then declined, while gill Na−K-ATPase activity started to rise rapidly within 3 h. The present results coincided with our previous morphological data concerning the ultrastructural responses of gill chloride cells. These are discussed to elucidate the osmoregulation mechanisms in tilapia during seawater acclimation.
The Journal of Experimental Biology | 2009
Pung-Pung Hwang
SUMMARY Transepithelial transport is one of the major processes involved in the mechanism of homeostasis of body fluids in vertebrates including fish. The current models of ion regulation in fish gill ionocytes have been proposed mainly based on studies in traditional model species like salmon, trout, tilapia, eel and killifish, but the mechanisms are still being debated due to the lack of convincing molecular physiological evidence. Taking advantage of plentiful genetic databases for zebrafish, we studied the molecular/cellular mechanisms of ion regulation in fish skin/gills. In our recently proposed model, there are at least three subtypes of ionocytes in zebrafish skin/gills: Na+–K+-ATPase-rich (NaR), Na+–Cl– cotransporter (NCC) and H+-ATPase-rich (HR) cells. Specific isoforms of transporters and enzymes have been identified as being expressed by these ionocytes: zECaC, zPMCA2 and zNCX1b by NaR cells; zNCC gill form by NCC cells; and zH+-ATPase, zNHE3b, zCA2-like a and zCA15a by HR cells. Serial molecular physiological experiments demonstrated the distinct roles of these ionocytes in the transport of various ions: HR, NaR and NCC cells are respectively responsible for acid secretion/Na+ uptake, Ca2+ uptake and Cl– uptake. The expression, regulation and function of transporters in HR and NaR cells are much better understood than those in NCC cells. The basolateral transport pathways in HR and NCC cells are still unclear, and the driving forces for the operations of apical NHE and NCC are another unresolved issue. Studies on zebrafish skin/gill ionocytes are providing new insights into fish ion-regulatory mechanisms, but the zebrafish model cannot simply be applied to other species because of species differences and a lack of sufficient molecular physiological evidence in other species.
General and Comparative Endocrinology | 1992
Pung-Pung Hwang; Su-Mei Wu; Jen-Hson Lin; Leang-Shin Wu
The whole-animal content of the cortisol was measured in embryos and larvae of tilapia (Oreochromis mossambicus), rainbow trout (Oncorhynchus mykiss), ayu (Plecoglossus altivelis), milkfish (Chanos chanos), and yellowfin bream (Acanthropagrus latus) by radioimmunoassay following the validation of an extraction method. The total cortisol content in tilapia was 50.3 +/- 19.1 pg immediately following fertilization, then decreased abruptly and maintained a lower level of 10-17 pg until larval hatching; after hatching the cortisol content increased to 47.2 +/- 11.9 pg by the seventh day. Newly hatched rainbow trout had 60.3 +/- 6.4 pg cortisol and then increased their cortisol level slowly to 83.0 +/- 7.2 pg by the fifth day after hatching. Ayu larvae contained 5.2 pg cortisol immediately following hatching. On the other hand, pelagic milkfish revealed a much lower cortisol level, being undetectable from hatching until the second day and ranging from 0.4 to 3.7 pg from the third to seventh day after hatching. Yellowfin bream, demonstrating a similarity to milkfish, were not found to have any detectable cortisol from hatching until the third day, but presented 1.6-7.7 pg from the fifth to seventh day after hatching. The presence and clearance of cortisol during early development of fertilized eggs of tilapia suggest a maternal origin of the hormone. The amount of cortisol deposited in the larval body of tilapia increased after hatching from 25% to nearly 100% of the total cortisol in whole larvae, while that in the larval yolk sac decreased to an undetectable level, implying that the increased cortisol may be produced or secreted by the larva. The possible role of cortisol in larval development is discussed.
American Journal of Physiology-cell Physiology | 2008
Tin Han Shih; Jiun Lin Horng; Pung-Pung Hwang; Li Yih Lin
The mechanism of ammonia excretion in freshwater teleosts is not well understood. In this study, scanning ion-selective electrode technique was applied to measure H(+) and NH(4)(+) fluxes in specific cells on the skin of zebrafish larvae. NH(4)(+) extrusion was relatively high in H(+) pump-rich cells, which were identified as the H(+)-secreting ionocyte in zebrafish. Minor NH(4)(+) extrusion was also detected in keratinocytes and other types of ionocytes in larval skin. NH(4)(+) extrusion from the skin was tightly linked to acid secretion. Increases in the external pH and buffer concentration (5 mM MOPS) diminished H(+) and NH(4)(+) gradients at the larval surface. Moreover, coupled decreases in NH(4)(+) and H(+) extrusion were found in larvae treated with an H(+)-pump inhibitor (bafilomycin A1) or H(+)-pump gene (atp6v1a) knockdown. Knockdown of Rhcg1 with morpholino-oligonucleotides also decreased NH(4)(+) excretion. This study demonstrates ammonia excretion in epithelial cells of larval skin through an acid-trapping mechanism, and it provides direct evidence for the involvement of the H(+) pump and an Rh glycoprotein (Rhcg1) in ammonia excretion.
American Journal of Physiology-cell Physiology | 2010
Shu Chen Wu; Jiun Lin Horng; Sian Tai Liu; Pung-Pung Hwang; Zhi Hong Wen; Chan Shing Lin; Li Yih Lin
In this study, a scanning ion-selective electrode technique (SIET) was applied to measure H(+), Na(+), and NH(4)(+) gradients and apparent fluxes at specific cells on the skin of medaka larvae. Na(+) uptake and NH(3)/NH(4)(+) excretion were detected at most mitochondrion-rich cells (MRCs). H(+) probing at MRCs revealed two group of MRCs, i.e., acid-secreting and base-secreting MRCs. Treatment with EIPA (100 muM) blocked 35% of the NH(3)/NH(4)(+) secretion and 54% of the Na(+) uptake, suggesting that the Na(+)/H(+) exchanger (NHE) is involved in Na(+) and NH(3)/NH(4)(+) transport. Low-Na(+) water (<0.001 mM) or high-NH(4)(+) (5 mM) acclimation simultaneously increased Na(+) uptake and NH(3)/NH(4)(+) excretion but decreased or even reversed the H(+) gradient at the skin and MRCs. The correlation between NH(4)(+) production and H(+) consumption at the skin surface suggests that MRCs excrete nonionic NH(3) (base) by an acid-trapping mechanism. Raising the external NH(4)(+) significantly blocked NH(3)/NH(4)(+) excretion and Na(+) uptake. In contrast, raising the acidity of the water (pH 7 to pH 6) enhanced NH(3)/NH(4)(+) excretion and Na(+) uptake by MRCs. In situ hybridization and real-time PCR showed that the mRNAs of the Na(+)/H(+) exchanger (slc9a3) and Rhesus glycoproteins (Rhcg1 and Rhbg) were colocalized in MRCs of medaka, and their expressions were induced by low-Na(+) acclimation. This study suggests a novel Na(+)/NH(4)(+) exchange pathway in apical membranes of MRCs, in which a coupled NHE and Rh glycoprotein is involved and the Rh glycoprotein may drive the NHE by generating H(+) gradients across apical membranes of MRCs.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009
Yi Fang Wang; Yung Che Tseng; Jia Jiun Yan; Junya Hiroi; Pung-Pung Hwang
The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), a member of the SLC12 family, is mainly expressed in the apical membrane of the mammalian distal convoluted tubule (DCT) cells, is responsible for cotransporting Na(+) and Cl(-) from the lumen into DCT cells and plays a major role in the mammalian renal NaCl reabsorption. The NCC has also been reported in fish, but the functional role in fish ion regulation is yet unclear. The present study used zebrafish as an in vivo model to test the hypothesis of whether the NCC plays a role in Na(+) and/or Cl(-) uptake mechanisms. Four NCCs were cloned, and only one of them, zebrafish (z) slc12a10.2 was found to predominately and specifically be expressed in gills. Double in situ hybridization/immunocytochemistry in zebrafish skin/gills demonstrated that the specific expression of zslc12a10.2 mRNA in a novel group of ionocytes differed from those of the previously-reported H(+)-ATPase-rich (HR) cells and Na(+)-K(+)-ATPase-rich (NaR) cells. Gill mRNA expression of zslc12a10.2 was induced by a low-Cl environment that stimulated fish Cl(-) influx, while a low-Na environment suppressed this expression. Incubation with metolazone, a specific inhibitor of the NCC, impaired both Na(+) and Cl(-) influx in 5-day postfertilization (dpf) zebrafish embryos. Translational knockdown of zslc12a10.2 with a specific morpholino caused significant decreases in both Cl(-) influx and Cl(-) content of 5-dpf zebrafish embryos, suggesting that the operation of zNCC-like 2 results in a net uptake of Cl(-) in zebrafish. On the contrary, zslc12a10.2 morphants showed increased Na(+) influx and content that resulted from upregulation of mRNA expressions of Na(+)-H(+) exchanger 3b and carbonic anhydrase 15a in HR cells. These results for the first time provide in vivo molecular physiological evidence for the possible role of the NCC in the Cl(-) uptake mechanism in zebrafish skin/gills.
PLOS ONE | 2007
Chung-Der Hsiao; May-Su You; Ying-Jey Guh; Ming Ma; Yun-Jin Jiang; Pung-Pung Hwang
Background Epidermal ionocytes play essential roles in the transepithelial transportation of ions, water, and acid-base balance in fish embryos before their branchial counterparts are fully functional. However, the mechanism controlling epidermal ionocyte specification and differentiation remains unknown. Methodology/Principal Findings In zebrafish, we demonstrated that Delta-Notch-mediated lateral inhibition plays a vital role in singling out epidermal ionocyte progenitors from epidermal stem cells. The entire epidermal ionocyte domain of genetic mutants and morphants, which failed to transmit the DeltaC-Notch1a/Notch3 signal from sending cells (epidermal ionocytes) to receiving cells (epidermal stem cells), differentiates into epidermal ionocytes. The low Notch activity in epidermal ionocyte progenitors is permissive for activating winged helix/forkhead box transcription factors of foxi3a and foxi3b. Through gain- and loss-of-function assays, we show that the foxi3a-foxi3b regulatory loop functions as a master regulator to mediate a dual role of specifying epidermal ionocyte progenitors as well as of subsequently promoting differentiation of Na+,K+-ATPase-rich cells and H+-ATPase-rich cells in a concentration-dependent manner. Conclusions/Significance This study provides a framework to show the molecular mechanism controlling epidermal ionocyte specification and differentiation in a low vertebrate for the first time. We propose that the positive regulatory loop between foxi3a and foxi3b not only drives early ionocyte differentiation but also prevents the complete blockage of ionocyte differentiation when the master regulator of foxi3 function is unilaterally compromised.
American Journal of Physiology-cell Physiology | 2008
Tzung Yi Lin; Bo Kai Liao; Jiun Lin Horng; Jia Jiun Yan; Chung Der Hsiao; Pung-Pung Hwang
H(+)-ATPase-rich (HR) cells in zebrafish gills/skin were found to carry out Na+ uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a functional genomic approach to identify 20 CA isoforms in zebrafish. By screening with whole mount in situ hybridization, only zca2-like a and zca15a were found to be expressed in specific groups of cells in zebrafish gills/skin, and further analyses by triple in situ hybridization and immunocytochemistry demonstrated specific colocalizations of the two zca isoforms in HR cells. Knockdown of zca2-like a caused no change in and knockdown of zca15a caused an increase in H+ activity at the apical surface of HR cells at 24 h postfertilization (hpf). Later, at 96 hpf, both the zca2-like a and zca15a morphants showed decreased H+ activity and increased Na+ uptake, with concomitant upregulation of znhe3b and downregulation of zatp6v1a (H+-ATPase A-subunit) expressions. Acclimation to both acidic and low-Na+ fresh water caused upregulation of zca15a expression but did not change the zca2-like a mRNA level in zebrafish gills. These results provide molecular physiological evidence to support the roles of these two zCA isoforms in Na+ uptake and acid-base regulation mechanisms in zebrafish HR cells.