Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Punithavathi Ranganathan is active.

Publication


Featured researches published by Punithavathi Ranganathan.


Kidney International | 2013

Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production

Punithavathi Ranganathan; Calpurnia Jayakumar; Riyaz Mohamed; Zheng Dong; Ganesan Ramesh

Netrin-1 regulates inflammation but the mechanism by which this occurs is unknown. Here we explore the role of netrin-1 in regulating the production of the prostanoid metabolite PGE2 from neutrophils in in vitro and in vivo disease models. Ischemia reperfusion in wild-type and RAG-1 knockout mice induced severe kidney injury that was associated with a large increase in neutrophil infiltration and COX-2 expression in the infiltrating leukocytes. Administration of netrin-1 suppressed COX-2 expression, PGE2 and thromboxane production, and neutrophil infiltration into the kidney. This was associated with reduced apoptosis, inflammatory cytokine and chemokine expression, and improved kidney function. Treatment with the PGE2 receptor EP4 agonist enhanced neutrophil infiltration and renal injury which was not inhibited by netrin-1. Consistent with in vivo data, both LPS and IFNγ-induced inflammatory cytokine production in macrophages and IL-17-induced IFNγ production in neutrophils were suppressed by netrin-1 in vitro by suppression of COX-2 expression. Moreover, netrin-1 regulates COX-2 expression at the transcriptional level through the regulation of NFκB activation. Thus, netrin-1 regulates the inflammatory response of neutrophils and macrophages through suppression of COX-2 mediated PGE2 production. This could be a potential drug for treating many inflammatory immune disorders.


American Journal of Physiology-renal Physiology | 2013

Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization

Punithavathi Ranganathan; Calpurnia Jayakumar; Ganesan Ramesh

Improper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury. However, it was not known whether netrin-1 regulates the phenotype of macrophages and the signaling mechanism through which it might do this. In this study, we report novel mechanisms underlying netrin-1s effects on macrophages using in vivo and in vitro studies. Overexpression of netrin-1 in spleen and kidney of transgenic mice increased expression of arginase-1, IL-4, and IL-13 and decreased expression of COX-2, indicating a phenotypic switch in macrophage polarization toward an M2-like phenotype. Moreover, flow cytometry analysis showed a significant increase in mannose receptor-positive macrophages in spleen compared with wild type. In vitro, netrin-1 induced the expression of M2 marker expression in bone marrow-derived macrophages, peritoneal macrophages, and RAW264.7 cells, and suppressed IFNγ-induced M1 polarization and production of inflammatory mediators. Adoptive transfer of netrin-1-treated macrophages suppressed inflammation and kidney injury against ischemia-reperfusion. Netrin-1 activated PPAR pathways and inhibition of PPAR activation abolished netrin-1-induced M2 polarization and suppression of cytokine production. Consistent with in vitro studies, administration of PPAR antagonist to mice abolished the netrin-1 protective effects against ischemia-reperfusion injury of the kidney. These findings illustrate that netrin-1 regulates macrophage polarization through PPAR pathways and confers anti-inflammatory actions in inflammed kidney tissue.


Cardiovascular Research | 2015

MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death

Yaoping Tang; Yongchao Wang; Kyoung Mi Park; Qiuping Hu; Jian Peng Teoh; Zuzana Broskova; Punithavathi Ranganathan; Calpurnia Jayakumar; Jie Li; Huabo Su; Yaoliang Tang; Ganesan Ramesh; Il Man Kim

AIMS Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. METHODS AND RESULTS Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. CONCLUSION These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury.


American Journal of Pathology | 2012

Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice.

Riyaz Mohamed; Calpurnia Jayakumar; Punithavathi Ranganathan; Vadivel Ganapathy; Ganesan Ramesh

Inflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals. Kidney function, fibrosis, glucose excretion, albuminuria, and inflammation were evaluated. The mechanism of netrin-1-induced suppression of inflammation was studied in vitro using a proximal tubular epithelial cell line. Diabetes was associated with increased infiltration of neutrophils and macrophages, chemokine expression, and tubular epithelial cell apoptosis in kidney. These changes were minimal in kidney of netrin-1 transgenic mice. In addition, diabetes induced a large increase in the excretion of prostaglandin E2 (PGE2) in urine, which was suppressed in netrin-1 transgenic mice. Netrin-1-induced suppression of PGE2 production was mediated through suppression of NFκB-mediated cyclooxygenase-2 (COX-2) in renal tubular epithelial cells. Furthermore, netrin-1 also increased albumin uptake by proximal tubular epithelial cells through the PI3K and ERK pathways without increasing glucose uptake. These findings suggest that netrin-1 is a major regulator of inflammation and apoptosis in diabetic nephropathy and may be a useful therapeutic molecule for treating chronic kidney diseases such as diabetic nephropathy.


PLOS ONE | 2013

Semaphorin 3A Is a New Early Diagnostic Biomarker of Experimental and Pediatric Acute Kidney Injury

Calpurnia Jayakumar; Punithavathi Ranganathan; Prasad Devarajan; Catherine D. Krawczeski; Stephen W. Looney; Ganesan Ramesh

Background Semaphorin 3A is a secreted protein that regulates cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumor progression. However, nothing is known about its role in kidney pathophysiology. Here, we determined whether semaphorin3A is induced after acute kidney injury (AKI) and whether urinary semaphorin 3A can predict AKI in humans undergoing cardiopulmonary bypass (CPB). Methods and Principal Findings In animals, semaphorin 3A is localized in distal tubules of the kidney and excretion increased within 3 hr after reperfusion of the kidney whereas serum creatinine was significantly raised at 24 hr. In humans, using serum creatinine, AKI was detected on average only 48 hours after CPB. In contrast, urine semaphorin increased at 2 hours after CPB, peaked at 6 hours (2596±591 pg/mg creatinine), and was no longer significantly elevated 12 hours after CPB. The predictive power of semaphorin 3A as demonstrated by area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 12 hours after CPB was 0.88, 0.81, and 0.74, respectively. The 2-hour urine semaphorin measurement strongly correlated with duration and severity of AKI, as well as length of hospital stay. Adjusting for CPB time and gender, the 2-hour semaphorin remained an independent predictor of AKI, with an odds ratio of 2.19. Conclusion Our results suggest that semaphorin 3A is an early, predictive biomarker in experimental and pediatric AKI, and may allow for the reliable early diagnosis and prognosis of AKI after CPB, much before the rise in serum creatinine.


American Journal of Physiology-renal Physiology | 2013

CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation

Punithavathi Ranganathan; Calpurnia Jayakumar; Santhakumar Manicassamy; Ganesan Ramesh

Organ cross talk exists in many diseases of the human and animal models of human diseases. A recent study demonstrated that inflammatory mediators can cause acute kidney injury and neutrophil infiltration in a mouse model of dextran sodium sulfate (DSS)-colitis. However, the chemokines and their receptors that may mediate distant organ effects in colitis are unknown. We hypothesized that keratinocyte chemoattractant (KC)/IL-8 receptor chemokine (C-X-C motif) ligand 2 (CXCL2) mediates DSS-colitis-induced acute kidney injury. Consistent with our hypothesis, wild-type (WT) mice developed severe colitis with DSS treatment, which was associated with inflammatory cytokine and chemokine expression and neutrophil infiltration in the colon. DSS-colitis in WT was accompanied by acute kidney injury and enhanced expression of inflammatory cytokines in the kidney. However, CXCR2 knockout mice were protected against DSS-colitis as well as acute kidney injury. Moreover, the expression of cytokines and chemokines and neutrophil infiltration was blunted in CXCR2 knockout mice in the colon and kidney. Administration of recombinant KC exacerbated DSS-colitis-induced acute kidney injury. Our results suggest that KC/IL-8 and its receptor CXCR2 are critical and major mediators of organ cross talk in DSS colitis and neutralization of CXCR2 will help to reduce the incidence of acute kidney injury due to ulcerative colitis and Crohns disease in humans.


American Journal of Physiology-renal Physiology | 2014

Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury.

Punithavathi Ranganathan; Calpurnia Jayakumar; Riyaz Mohamed; Neal L. Weintraub; Ganesan Ramesh

Recent studies show that guidance molecules that are known to regulate cell migration during development may also play an important role in adult pathophysiologic states. One such molecule, semaphorin3A (sema3A), is highly expressed after acute kidney injury (AKI) in mice and humans, but its pathophysiological role is unknown. Genetic inactivation of sema3A protected mice from ischemia-reperfusion-induced AKI, improved tissue histology, reduced neutrophil infiltration, prevented epithelial cell apoptosis, and increased cytokine and chemokine excretion in urine. Pharmacological-based inhibition of sema3A receptor binding likewise protected against ischemia-reperfusion-induced AKI. In vitro, sema3A enhanced toll-like receptor 4-mediated inflammation in epithelial cells, macrophages, and dendritic cells. Moreover, administration of sema3A-treated, bone marrow-derived dendritic cells exacerbated kidney injury. Finally, sema3A augmented cisplatin-induced apoptosis in kidney epithelial cells in vitro via expression of DFFA-like effector a (cidea). Our data suggest that the guidance molecule sema3A exacerbates AKI via promoting inflammation and epithelial cell apoptosis.


PLOS ONE | 2011

Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

Calpurnia Jayakumar; Riyaz Mohamed; Punithavathi Ranganathan; Ganesan Ramesh

Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells.


American Journal of Physiology-renal Physiology | 2013

Netrin-1 regulates colon-kidney cross talk through suppression of IL-6 function in a mouse model of DSS-colitis

Punithavathi Ranganathan; Calpurnia Jayakumar; Manicassamy Santhakumar; Ganesan Ramesh

Organ cross talk is increasingly appreciated in human disease, and inflammatory mediators are shown to mediate distant organ injury in many disease models. Colitis and intestinal injury are known to be mediated by infiltrating immune cells and their secreted cytokines. However, its effect on other organs, such as the kidney, has never been studied. In the current study, we examined the effect of dextran sulfate sodium (DSS)-colitis on kidney injury and inflammation. In addition, we hypothesized that netrin-1 could modulate colon-kidney cross talk through regulation of inflammation and apoptosis. Consistent with our hypothesis, DSS-colitis induced acute kidney injury in mice. Epithelial-specific overexpression of netrin-1 suppressed both colitis and colitis-induced acute kidney injury, which was associated with reduced weight loss, neutrophil infiltration into colon mucosa, intestinal permeability, epithelial cell apoptosis, and cytokine and chemokine production in netrin-1 transgenic mice colon and kidney. To determine whether netrin-1-protective effects were mediated through suppression of IL-6, IL-6 knockout mice were treated with DSS and acute kidney injury was determined. IL-6 knockout was resistant to colitis and acute kidney injury. Moreover, administration of IL-6 to netrin-1 transgenic mice did not affect the netrin-1-protective effects on the colon and kidney, suggesting that netrin-1 may reduce both IL-6 production and its activity. The present study identifies previously unrecognized cross talk between the colon and kidney, and netrin-1 may limit distant organ injury by suppressing inflammatory mediators and apoptosis.


American Journal of Physiology-renal Physiology | 2015

MicroRNA-150 deletion in mice protects kidney from myocardial infarction induced acute kidney injury

Punithavathi Ranganathan; Calpurnia Jayakumar; Yaoping Tang; Kyoung Mi Park; Jian Peng Teoh; Huabo Su; Jie Li; Il Man Kim; Ganesan Ramesh

Despite greater understanding of acute kidney injury (AKI) in animal models, many of the preclinical studies are not translatable. Most of the data were derived from a bilateral renal pedicle clamping model with warm ischemia. However, ischemic injury of the kidney in humans is distinctly different and does not involve clamping of renal vessel. Permanent ligation of the left anterior descending coronary artery model was used to test the role of microRNA (miR)-150 in AKI. Myocardial infarction in this model causes AKI which is similar to human cardiac bypass surgery. Moreover, the time course of serum creatinine and biomarker elevation were also similar to human ischemic injury. Deletion of miR-150 suppressed AKI which was associated with suppression of inflammation and interstitial cell apoptosis. Immunofluorescence staining with endothelial marker and marker of apoptosis suggested that dying cells are mostly endothelial cells with minimal epithelial cell apoptosis in this model. Interestingly, deletion of miR-150 also suppressed interstitial fibrosis. Consistent with protection, miR-150 deletion causes induction of its target gene insulin-like growth factor-1 receptor (IGF-1R) and overexpression of miR-150 in endothelial cells downregulated IGF-1R, suggesting miR-150 may mediate its detrimental effects through suppression of IGF-1R pathways.

Collaboration


Dive into the Punithavathi Ranganathan's collaboration.

Top Co-Authors

Avatar

Ganesan Ramesh

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Calpurnia Jayakumar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Riyaz Mohamed

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Swafford

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Il Man Kim

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge