Punnajit Lim
Beckman Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Punnajit Lim.
Chemical Research in Toxicology | 2012
Punnajit Lim; Atif Mahammed; Zoya Okun; Irena Saltsman; Zeev Gross; Harry B. Gray; John Termini
A gallium(III)-substituted amphiphilic corrole noncovalently associated with a targeting protein was previously found by us to confer promising cytotoxic and antitumor activities against a breast cancer cell line and a mouse xenograft breast cancer model. To further explore potential anticancer applications, the cytostatic and cytotoxic properties of six nontargeted metallocorroles were evaluated against seven human cancer cell lines. Results indicated that toxicity toward human cancer cells depended on the metal ion as well as corrole functional group substitution. Ga(III)-substituted metallocorrole 1-Ga inhibited proliferation of breast (MDA-MB-231), melanoma (SK-MEL-28), and ovarian (OVCAR-3) cancer cells primarily by arrest of DNA replication, whereas 2-Mn displayed both cytostatic and cytotoxic properties. Confocal microscopy revealed extensive uptake of 1-Ga into the cytoplasm of melanoma and ovarian cancer cells, while prostate cancer cells (DU-145) displayed extensive nuclear localization. The localization of 1-Ga to the nucleus in DU-145 cells was exploited to achieve a 3-fold enhancement in the IC(50) of doxorubicin upon coadministration. Time-course studies showed that over 90% of melanoma cells incubated with 30 μM 1-Ga internalized metallocorrole after 15 min. Cellular uptake of 1-Ga and 1-Al was fastest and most efficient in melanoma, followed by prostate and ovarian cancer cells. Cell cycle analyses revealed that bis-sulfonated corroles containing Al(III), Ga(III), and Mn(III) induced late M phase arrest in several different cancer cell lines, a feature that could be developed for potential therapeutic benefit.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Melanie A. Pribisko; Joshua H. Palmer; Robert H. Grubbs; Harry B. Gray; John Termini; Punnajit Lim
Significance Corroles are macrocyclic molecules related to porphyrins that exhibit intense light absorptions in the visible region. They also are very bright emitters, with luminescence quantum yields over 50% in some cases. Importantly, we have discovered that two corroles functionalized with carboxylate groups at different ring locations exhibit anticancer activity superior to cisplatin. Although the synthetic route to direct carboxylation of the tetrapyrrolic framework requires the use of phosgene, installing aminocaproate on the fluorophenyl ring by nucleophilic aromatic substitution uses mild conditions with biocompatible reagents, requiring only simple purification and providing ready access to structurally complex corroles. Carboxylated corroles are very rapidly taken up by cells, with an order of magnitude gain in dark cytotoxicity likely owing to greater cell permeability. We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.
International Journal of Molecular Sciences | 2018
Josh Neman; Punnajit Lim; Daniel Tamae; Claudia M. Kowolik; Gerald E. Wuenschell; Sarah C. Shuck; Alexandra K. Ciminera; Luis De Jesus; Ching Ouyang; Mike Chen; John Termini
Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S-(p-bromobenzyl) glutathione dicyclopentyl ester (p-BrBzGSH(Cp)2) increased levels of the DNA-AGE N2-1-(carboxyethyl)-2′-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp)2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.
Journal of Visualized Experiments | 2015
Grace Y. Tang; Melanie A. Pribisko; Ryan K. Henning; Punnajit Lim; John Termini; Harry B. Gray; Robert H. Grubbs
Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme. Adding the complex after RNA transcription can be used to test whether the complexes degrade or hydrolyze the RNA. This assay can also be used to study additional anticancer candidates.
Biochemistry | 2004
Punnajit Lim; Gerald E. Wuenschell; Vanessa Holland; Dong-Hyun Lee; Gerd P. Pfeifer; Henry Rodriguez; John Termini
Chemical Communications | 2014
Ruijie D. Teo; Harry B. Gray; Punnajit Lim; John Termini; Elena Domeshek; Zeev Gross
Biochemistry | 2011
Daniel Tamae; Punnajit Lim; Gerald E. Wuenschell; John Termini
Biochemistry | 2003
Punnajit Lim; Kianoush Sadre-Bazzaz; Jesse Shurter; and Alain Sarasin; John Termini
Chemical Research in Toxicology | 2017
Richard Jaramillo; Sarah C. Shuck; Yin S. Chan; Xueli Liu; Steven Bates; Punnajit Lim; Daniel Tamae; Sandrine Lacoste; Timothy R. O’Connor; John Termini
Archive | 2014
M. P. Yen; S. A. Mangold; Harry B. Gray; Robert H. Grubbs; Punnajit Lim; John Termini