Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Purvi Mehrotra is active.

Publication


Featured researches published by Purvi Mehrotra.


Journal of Biological Chemistry | 2011

PARP-14 Functions as a Transcriptional Switch for Stat6-dependent Gene Activation

Purvi Mehrotra; Jonathan P. Riley; Ravi Patel; Fang Li; Le'erin Voss; Shreevrat Goenka

A subset of poly ADP-ribose polymerases (PARP) that also contain macro domains regulate transcription. One such macro PARP, PARP-14 alters interleukin 4 (IL-4) and Stat6-dependent transcription. Stat6, activated by IL-4 plays an important role in T helper cell immunity and B cell responses. Here we define the mechanism by which PARP-14 regulates Stat6-activated transcription. Under non-stimulating conditions, PARP-14 recruits HDAC 2 and 3 to IL-4 responsive promoters. In the presence of IL-4, PARP-14 promotes efficient binding of Stat6 to its target genes. Moreover, HDAC 2 and 3 are released from the promoter with an IL-4 signal, this is aided by the ADP-ribosylation of the HDACs by PARP-14. The HDACs and PARP-14 get replaced by coactivators containing HAT activity. Based on these observations we put forth a mechanism in which PARP-14 functions as a transcriptional switch for Stat6-dependent gene induction. Thus, in the absence of a signal PARP-14 acts as a transcriptional repressor by recruiting HDACs. In contrast, in the presence of IL-4 the catalytic activity of PARP-14 facilitates Stat6 binding to the promoter, and release of HDACs so as to activate transcription.


The Journal of Allergy and Clinical Immunology | 2013

Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates TH2 differentiation and allergic airway disease

Purvi Mehrotra; Andrew N. Hollenbeck; Jonathan P. Riley; Fang Li; Ravi Patel; Nahid Akhtar; Shreevrat Goenka

BACKGROUND IL-4 and signal transducer and activator of transcription 6 (STAT6) play an important role in the progression of allergic airway disease (AAD) or asthma. IL-4 and STAT6 mediate T(H)2 responses in T cells and immunoglobulin class-switching to IgE in B cells. Both T(H)2 responses and IgE promote the asthmatic condition. We have previously demonstrated that poly (ADP-ribose) polymerase (PARP) 14, a member of the PARP family of proteins, regulates the transcription function of STAT6. However, the role of PARP-14 in AAD is not known. OBJECTIVE Here we investigate the role of PARP-14 and the enzyme activity associated with it in a model of AAD dependent on airway hyperresponsiveness and lung inflammation. We also elucidate the mechanism by which PARP-14 regulates AAD. METHODS The role of PARP-14 and its enzyme activity in AAD and T(H)2 differentiation were examined by using a murine model of AAD and in vitro T(H) cell differentiation. RESULTS PARP-14-deficient animals show reduced lung pathology and IgE levels when compared with control animals. Treating mice with a pharmacologic inhibitor for PARP activity reduced the severity of airway hyperresponsiveness and lung inflammation. Mechanistically, our data indicate that PARP-14 and its enzyme activity aid in the differentiation of T cells toward a T(H)2 phenotype by regulating the binding of STAT6 to the Gata3 promoter. CONCLUSION PARP-14 and the catalytic activity associated with it promote T(H)2 differentiation and AAD in a murine model, and targeting PARP-14 might be a potential new therapy for allergic asthma.


Kidney International | 2015

Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism

Purvi Mehrotra; Jaymin B. Patel; Carlie M. Ivancic; Jason A. Collett; David P. Basile

Exposure of rats to elevated dietary salt following recovery from acute kidney injury (AKI) accelerates the transition to chronic kidney disease (CKD), and is dependent on lymphocyte activity. Here we tested whether high salt diet triggers lymphocyte activation in post-ischemic kidneys to worsen renal inflammation and fibrosis. Male Sprague- Dawley rats on a 0.4% salt diet were subjected to left unilateral ischemia-reperfusion and allowed to recover for 5 weeks. This resulted in a mild elevation of CD4+ T-cells relative to sham animals. Contralateral unilateral nephrectomy and elevated dietary salt (4%) for 4 extra weeks hastened CKD and interstitial fibrosis. Activated T cells were increased in the kidney 3-fold after 4 weeks of elevated dietary salt exposure relative to post AKI rats prior to salt feeding. The T-cell subset was largely positive for IL-17, indicative of Th-17 cells. Because angiotensin II activity may influence lymphocyte activation, injured rats were given the AT1R antagonist, Losartan, along with high salt diet. This significantly reduced the number of renal Th-17 cells to levels of sham rats, and significantly reduced the salt-induced increase in fibrosis about half. In vitro studies in AKI-primed CD4+ T cells indicated angiotensin II and extracellular sodium enhanced, and Losartan inhibited IL-17 expression. Thus, dietary salt modulates immune cell activity in post ischemic recovering kidneys due to the activity of local RAS suggesting participation of these cells in CKD progression post AKI.


Pediatric Dermatology | 2013

Topical Application of a Vitamin D Analogue Exacerbates Atopic Dermatitis and Induces the Atopic Dermatitis-like Phenotype in Stat6VT Mice

Matthew J. Turner; Sonia C. DaSilva-Arnold; B S Qiaofang Yi; Purvi Mehrotra; Mark H. Kaplan; Jeffrey B. Travers

Calcipotriene is a topical vitamin D3 analogue approved for the treatment of plaque and scalp psoriasis. We report the case of a 2‐year‐old boy whose atopic dermatitis (AD) flared in response to application of calcipotriene 0.005% cream and solution for a mistaken diagnosis of plaque and scalp psoriasis. We investigated whether the patients eruption was secondary to an allergic contact dermatitis. In the Stat6VT mouse model of AD we tested whether calcipotriene could induce the otherwise‐spontaneous AD‐like phenotype. Closed patch testing was done on the patient with calcipotriene solution and cream, moisturizing cream, and 51% isopropanol. Stat6VT and wild‐type (WT) mice were treated for 7 days with calcipotriene solution or vehicle (isopropanol) applied to the right and left upper back skin, respectively, after which mice were followed longitudinally for 10 weeks. Biopsy specimens from prior treatment sites were then collected for histology and RNA isolation. RNA was analyzed for interleukin (IL‐4) expression using quantitative polymerase chain reaction. Patch testing was negative. Stat6VT mice, in contrast to WT mice, developed a persistent eczematous dermatitis at sites of calcipotriene application. Clinical and histologic features and high IL‐4 transcript levels were consistent with the spontaneous AD‐like phenotype seen in Stat6VT mice. At sites of active disease, calcipotriene can worsen a flare of AD. In Stat6VT mice, calcipotriene can induce the AD‐like phenotype.


PLOS ONE | 2013

PARP-14 Binds Specific DNA Sequences to Promote Th2 Cell Gene Expression

Jonathan P. Riley; Aishwarya Kulkarni; Purvi Mehrotra; Byunghee Koh; Narayanan B. Perumal; Mark H. Kaplan; Shreevrat Goenka

PARP-14, a member of the poly ADP-ribose polymerase super family, promotes T helper cell 2 (Th2) differentiation by regulating interleukin-4 (IL-4) and STAT6-dependent transcription. Yet, whether PARP-14 globally impacts gene regulation has not been determined. In this report, using an RNA pol II ChIP-seq approach, we identify genes in Th2 cells that are regulated by PARP-14, and either dependent or independent of ADP-ribosyltransferase catalytic activity. Our data demonstrate that PARP-14 enhances the expression of Th2 genes as it represses the expression of Th1-associated genes. Among the relevant targets are Signal Transducer and Activator of Transcription genes required for polarizing Th1 and Th2 cells. To define a mechanism for PARP-14 function, we use an informatics approach to identify putative PARP-14 DNA binding sites. Two putative PARP-14 binding motifs are identified in multiple Th2 cytokine genes, and we demonstrate that PARP-14 interacts with each motif using in vitro binding assays. Taken together our results indicate that PARP-14 is an important factor for T helper cell differentiation and it binds to specific DNA sequences to mediate its function.


Physiological Reports | 2016

Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury

Ana Carolina de Bragança; Rildo Aparecido Volpini; Purvi Mehrotra; Lúcia Andrade; David P. Basile

Reductions in renal microvasculature density and increased lymphocyte activity may play critical roles in the progression of chronic kidney disease (CKD) following acute kidney injury (AKI) induced by ischemia/reperfusion injury (IRI). Vitamin D deficiency is associated with tubulointerstitial damage and fibrosis progression following IRI‐AKI. We evaluated the effect of vitamin D deficiency in sustained IRI‐AKI, hypothesizing that such deficiency contributes to the early reduction in renal capillary density or alters the lymphocyte response to IRI. Wistar rats were fed vitamin D‐free or standard diets for 35 days. On day 28, rats were randomized into four groups: control, vitamin D deficient (VDD), bilateral IRI, and VDD+IRI. Indices of renal injury and recovery were evaluated for up to 7 days following the surgical procedures. VDD rats showed reduced capillary density (by cablin staining), even in the absence of renal I/R. In comparison with VDD and IRI rats, VDD+IRI rats manifested a significant exacerbation of capillary rarefaction as well as higher urinary volume, kidney weight/body weight ratio, tissue injury scores, fibroblast‐specific protein‐1, and alpha‐smooth muscle actin. VDD+IRI rats also had higher numbers of infiltrating activated CD4+ and CD8+ cells staining for interferon gamma and interleukin‐17, with a significant elevation in the Th17/T‐regulatory cell ratio. These data suggest that vitamin D deficiency impairs renal repair responses to I/R injury, exacerbates changes in renal capillary density, as well as promoting fibrosis and inflammation, which may contribute to the transition from AKI to CKD.


Journal of Cellular and Molecular Medicine | 2017

Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury

Jason A. Collett; Dmitry O. Traktuev; Purvi Mehrotra; Allison Crone; Stephanie Merfeld-Clauss; Keith L. March; David P. Basile

Damage to endothelial cells contributes to acute kidney injury (AKI) by causing impaired perfusion, while the permanent loss of the capillary network following AKI has been suggested to promote chronic kidney disease. Therefore, strategies to protect renal vasculature may impact both short‐term recovery and long‐term functional preservation post‐AKI. Human adipose stromal cells (hASCs) possess pro‐angiogenic and anti‐inflammatory properties and therefore have been tested as a therapeutic agent to treat ischaemic conditions. This study evaluated hASC potential to facilitate recovery from AKI with specific attention to capillary preservation and inflammation. Male Sprague Dawley rats were subjected to bilateral ischaemia/reperfusion and allowed to recover for either two or seven days. At the time of reperfusion, hASCs or vehicle was injected into the suprarenal abdominal aorta. hASC‐treated rats had significantly greater survival compared to vehicle‐treated rats (88.7% versus 69.3%). hASC treatment showed hastened recovery as demonstrated by lower creatinine levels at 48 hrs, while tubular damage was significantly reduced at 48 hrs. hASC treatment resulted in a significant decrease in total T cell and Th17 cell infiltration into injured kidneys at 2 days post‐AKI, but an increase in accumulation of regulatory T cells. By day 7, hASC‐treated rats showed significantly attenuated capillary rarefaction in the cortex (15% versus 5%) and outer medulla (36% versus 18%) compared to vehicle‐treated rats as well as reduced accumulation of interstitial alpha‐smooth muscle actin‐positive myofibroblasts. These results suggest for the first time that hASCs improve recovery from I/R‐induced injury by mechanisms that contribute to decrease in inflammation and preservation of peritubular capillaries.


American Journal of Physiology-renal Physiology | 2017

IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: Compensatory role of natural killer cells in athymic rats

Purvi Mehrotra; Jason A. Collett; Seth D. McKinney; Jackson Stevens; Carlie M. Ivancic; David P. Basile

T cells have been implicated in the pathogenesis of acute kidney injury (AKI) and its progression to chronic kidney disease (CKD). Previous studies suggest that Th17 cells participate during the AKI-to-CKD transition, and inhibition of T cell activity by mycophenolate mofetil (MMF) or losartan attenuates the development of fibrosis following AKI. We hypothesized that T cell-deficient rats may have reduced levels of IL-17 cytokine leading to decreased fibrosis following AKI. Renal ischemis-reperfusion (I/R) was performed on T cell-deficient athymic rats (Foxn1rnu-/rnu-) and control euthymic rats (Foxn1rnu-/+), and CKD progression was hastened by unilateral nephrectomy at day 33 and subsequent exposure to 4.0% sodium diet. Renal fibrosis developed in euthymic rats and was reduced by MMF treatment. Athymic rats exhibited a similar degree of fibrosis, but this was unaffected by MMF treatment. FACS analysis demonstrated that the number of IL-17+ cells was similar between postischemic athymic vs. euthymic rats. The source of IL-17 production in euthymic rats was predominately from conventional T cells (CD3+/CD161-). In the absence of conventional T cells in athymic rats, a compensatory pathway involving natural killer cells (CD3-/CD161+) was the primary source of IL-17. Blockade of IL-17 activity using IL-17Rc receptor significantly decreased fibrosis and neutrophil recruitment in both euthymic and athymic rats compared with vehicle-treated controls. Taken together, these data suggest that IL-17 secretion participates in the pathogenesis of AKI-induced fibrosis possibly via the recruitment of neutrophils and that the source of IL-17 may be from either conventional T cells or NK cells.


American Journal of Physiology-renal Physiology | 2017

Endothelial colony forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury.

Jason A. Collett; Purvi Mehrotra; Allison Crone; W. Christopher Shelley; Mervin C. Yoder; David P. Basile

Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFC) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFC may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia-reperfusion (I/R). Rat pulmonary microvascular endothelial cells (PMVEC) with high proliferative potential were compared with pulmonary artery endothelial cells (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 h of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of ICAM-1 and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.


Immunology | 2015

Poly‐ADP‐ribosyl polymerase‐14 promotes T helper 17 and follicular T helper development

Purvi Mehrotra; Purna Krishnamurthy; Jie Sun; Shreevrat Goenka; Mark H. Kaplan

Transcription factors are critical determinants of T helper cell fate and require a variety of co‐factors to activate gene expression. We previously identified the ADP ribosyl‐transferase poly‐ADP‐ribosyl polymerase 14 (PARP‐14) as a co‐factor of signal transducer and activator of transcription (STAT) 6 that is important in B‐cell and T‐cell responses to interleukin‐4, particularly in the differentiation of T helper type 2 (Th2) cells. However, whether PARP‐14 functions during the development of other T helper subsets is not known. In this report we demonstrate that PARP‐14 is highly expressed in Th17 cells, and that PARP‐14 deficiency and pharmacological blockade of PARP activity result in diminished Th17 differentiation in vitro and in a model of allergic airway inflammation. We further show that PARP‐14 is expressed in T follicular helper (Tfh) cells and Tfh cell development is impaired in PARP‐14‐deficient mice following immunization with sheep red blood cells or inactivated influenza virus. Decreases in Th17 and Tfh development are correlated with diminished phospho‐STAT3 and decreased expression of the interleukin‐6 receptor α‐chain in T cells. Together, these studies demonstrate that PARP‐14 regulates multiple cytokine responses during inflammatory immunity.

Collaboration


Dive into the Purvi Mehrotra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge