Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Puspa R. Pandey is active.

Publication


Featured researches published by Puspa R. Pandey.


Cancer Research | 2013

miR-7 Suppresses Brain Metastasis of Breast Cancer Stem-Like Cells By Modulating KLF4

Hiroshi Okuda; Fei Xing; Puspa R. Pandey; Sambad Sharma; Sudha K. Pai; Yin-Yuan Mo; Megumi Iiizumi-Gairani; Shigeru Hirota; Yin Liu; Kerui Wu; Radhika Pochampally; Kounosuke Watabe

Despite significant improvement in survival rates of patients with breast cancer, prognosis of metastatic disease is still dismal. Cancer stem-like cells (CSC) are considered to play a role in metastatic progression of breast cancer; however, the exact pathologic role of CSCs is yet to be elucidated. In this report, we found that CSCs (CD24(-)/CD44(+)/ESA(+)) isolated from metastatic breast cell lines are significantly more metastatic than non-CSC populations in an organ-specific manner. The results of our microRNA (miRNA) profile analysis for these cells revealed that CSCs that are highly metastatic to bone and brain expressed significantly lower level of miR-7 and that this miRNA was capable of modulating one of the essential genes for induced pluripotent stem cell, KLF4. Interestingly, high expression of KLF4 was significantly and inversely correlated to brain but not bone metastasis-free survival of patients with breast cancer, and we indeed found that the expression of miR-7 significantly suppressed the ability of CSCs to metastasize to brain but not to bone in our animal model. We also examined the expression of miR-7 and KLF4 in brain-metastatic lesions and found that these genes were significantly down- or upregulated, respectively, in the tumor cells in brain. Furthermore, the results of our in vitro experiments indicate that miR-7 attenuates the abilities of invasion and self-renewal of CSCs by modulating KLF4 expression. These results suggest that miR-7 and KLF4 may serve as biomarkers or therapeutic targets for brain metastasis of breast cancer.


Oncogene | 2011

Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells.

Fei Xing; Hiroshi Okuda; Aya Kobayashi; Sudha K. Pai; Wen Liu; Puspa R. Pandey; Koji Fukuda; Shigeru Hirota; Tamotsu Sugai; Go Wakabayshi; Keisuke Koeda; Masahiro Kashiwaba; Kazuyuki Suzuki; Toshimi Chiba; Masaki Endo; Yin-Yuan Mo; Kounosuke Watabe

Notch signaling is often and aberrantly activated by hypoxia during tumor progression; however, the exact pathological role of hypoxia-induced Notch signaling in tumor metastasis is as yet poorly understood. In this study, we aimed to define the mechanism of Notch-ligand activation by hypoxia in both primary tumor and bone stromal cells in the metastatic niche and to clarify their roles in tumor progression. We have analyzed the expression profiles of various Notch ligands in 779 breast cancer patients in GEO database and found that the expression of Jagged2 among all five ligands is most significantly correlated with the overall- and metastasis-free survival of breast cancer patients. The results of our immunohistochemical (IHC) analysis for Jagged2 in 61 clinical samples also revealed that both Jagged2 and Notch signaling were strongly upregulated at the hypoxic invasive front. Activation of Jagged2 by hypoxia in tumor cells induced EMT and also promoted cell survival in vitro. Notably, a γ-secretase inhibitor significantly blocked Notch-mediated invasion and survival under hypoxia by promoting expression of E-cadherin and inhibiting Akt phosphorylation. Importantly, Jagged2 was also found to be upregulated in bone marrow stroma under hypoxia and promoted the growth of cancer stem-like cells by activating their Notch signaling. Therefore, hypoxia-induced Jagged2 activation in both tumor invasive front and normal bone stroma has a critical role in tumor progression and metastasis, and Jagged2 is considered to be a valuable prognostic marker and may serve as a novel therapeutic target for metastatic breast cancer.


Embo Molecular Medicine | 2012

N-myc downstream regulated gene 1 modulates Wnt-β-catenin signalling and pleiotropically suppresses metastasis.

Wen Liu; Fei Xing; Megumi Iiizumi-Gairani; Hiroshi Okuda; Sudha K. Pai; Puspa R. Pandey; Shigeru Hirota; Aya Kobayashi; Yin-Yuan Mo; Koji Fukuda; Yi Li; Kounosuke Watabe

Wnt signalling has pivotal roles in tumour progression and metastasis; however, the exact molecular mechanism of Wnt signalling in the metastatic process is as yet poorly defined. Here we demonstrate that the tumour metastasis suppressor gene, NDRG1, interacts with the Wnt receptor, LRP6, followed by blocking of the Wnt signalling, and therefore, orchestrates a cellular network that impairs the metastatic progression of tumour cells. Importantly, restoring NDRG1 expression by a small molecule compound significantly suppressed the capability of otherwise highly metastatic tumour cells to thrive in circulation and distant organs in animal models. In addition, our analysis of clinical cohorts data indicate that Wnt+/NDRG−/LRP+ signature has a strong predictable value for recurrence‐free survival of cancer patients. Collectively, we have identified NDRG1 as a novel negative master regulator of Wnt signalling during the metastatic progression, which opens an opportunity to define a potential therapeutic target for metastatic disease.


Breast Cancer Research and Treatment | 2011

Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

Puspa R. Pandey; Hiroshi Okuda; Sudha K. Pai; Wen Liu; Aya Kobayashi; Fei Xing; Koji Fukuda; Shigeru Hirota; Tamotsu Sugai; Go Wakabayashi; Keisuke Koeda; Masahiro Kashiwaba; Kazuyuki Suzuki; Toshimi Chiba; Masaki Endo; Tomoaki Fujioka; Susumu Tanji; Yin-Yuan Mo; Deliang Cao; Andrew Wilber; Kounosuke Watabe

Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24−/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.


Cancer Research | 2012

Hyaluronan Synthase HAS2 Promotes Tumor Progression in Bone by Stimulating the Interaction of Breast Cancer Stem- Like Cells with Macrophages and Stromal Cells

Hiroshi Okuda; Aya Kobayashi; Bo Xia; Sudha K. Pai; Shigeru Hirota; Fei Xing; Wen Liu; Puspa R. Pandey; Koji Fukuda; Vishnu Modur; Arnab Ghosh; Andrew Wilber; Kounosuke Watabe

The molecular mechanisms that operate within the organ microenvironment to support metastatic progression remain unclear. Here, we report that upregulation of hyaluronan synthase 2 (HAS2) occurs in highly metastatic breast cancer stem-like cells (CSC) defined by CD44(+)/CD24(-)/ESA(+) phenotype, where it plays a critical role in the generation of a prometastatic microenvironment in breast cancer. HAS2 was critical for the interaction of CSCs with tumor-associated macrophages (TAM), leading to enhanced secretion of platelet-derived growth factor-BB from TAMs, which then activated stromal cells and enhanced CSC self-renewal. Loss of HAS2 in CSCs or treatment with 4-methylumbelliferone, an inhibitor of HAS, which blocks hyaluronan production, drastically reduced the incidence and growth of metastatic lesions in vitro or in vivo, respectively. Taken together, our findings show a critical role of HAS2 in the development of a prometastatic microenvironment and suggest that HAS2 inhibitors can act as antimetastatic agents that disrupt a paracrine growth factor loop within this microenvironment.


Embo Molecular Medicine | 2013

Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain

Fei Xing; Aya Kobayashi; Hiroshi Okuda; Sudha K. Pai; Puspa R. Pandey; Shigeru Hirota; Andrew Wilber; Yin-Yuan Mo; Brian E. Moore; Wen Liu; Koji Fukuda; Megumi Iiizumi; Sambad Sharma; Yin Liu; Kerui Wu; Elizabeth A. Peralta; Kounosuke Watabe

Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL‐1β which then ‘activated’ surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem‐like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up‐regulated HES5 followed by promoting self‐renewal of CSCs. Furthermore, we have shown that the blood‐brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re‐establish their niche for their self‐renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.


Recent Patents on Anti-cancer Drug Discovery | 2012

Anti-Cancer Drugs Targeting Fatty Acid Synthase (FAS)

Puspa R. Pandey; Wen Liu; Fei Xing; Koji Fukuda; Kounosuke Watabe

Fatty acid synthase (FAS) is a key enzyme of the fatty acid biosynthetic pathway which catalyzes de novo lipid synthesis. FAS expression in normal adult tissues is generally very low or undetectable as majority of fatty acids obtained are from dietary sources, whereas it is significantly upregulated in cancer cells despite adequate nutritional lipid supply. Activation of FAS provides rapidly proliferating tumor cells sufficient amount of lipids for membrane biogenesis and confers growth and survival advantage possibly acting as a metabolic oncogene. Importantly, inhibition of FAS in cancer cells using the pharmacological FAS inhibitors results in tumor cell death by apoptosis whereas normal cells are resistant. Due to this differential expression of FAS, the inhibitors of this enzyme are selectively toxic to tumor cells and therefore FAS is considered an attractive therapeutic target for cancer. Several FAS inhibitors are already patented and commercially available; however, the potential toxicity of these FAS inhibitors remains to be tested in clinical trials. In this review, we discuss some of the potent FAS inhibitors along with their patent information, the mechanism of anti-cancer effects and the development of more specific and potent FAS inhibitors with lower side effects that are expected to emerge as anti-cancer treatment in the near future.


Journal of Biological Chemistry | 2011

KAI1 Gene Is Engaged in NDRG1 Gene-mediated Metastasis Suppression through the ATF3-NFκB Complex in Human Prostate Cancer

Wen Liu; Megumi Iiizumi-Gairani; Hiroshi Okuda; Aya Kobayashi; Sudha K. Pai; Puspa R. Pandey; Fei Xing; Koji Fukuda; Vishnu Modur; Shigeru Hirota; Kazuyuki Suzuki; Toshimi Chiba; Masaki Endo; Tamotsu Sugai; Kounosuke Watabe

NDRG1 and KAI1 belong to metastasis suppressor genes, which impede the dissemination of tumor cells from primary tumors to distant organs. Previously, we identified the metastasis promoting transcription factor, ATF3, as a downstream target of NDRG1. Further analysis revealed that the KAI1 promoter contained a consensus binding motif of ATF3, suggesting a possibility that NDRG1 suppresses metastasis through inhibition of ATF3 expression followed by activation of the KAI1 gene. In this report, we found that ectopic expression of NDRG1 was able to augment endogenous KAI1 gene expression in prostate cancer cell lines, whereas silencing NDRG1 was accompanied with significant decrease in KAI1 expression in vitro and in vivo. In addition, our results of ChIP analysis indicate that ATF3 indeed bound to the promoter of the KAI1 gene. Importantly, our promoter-based analysis revealed that ATF3 modulated KAI1 transcription through cooperation with other endogenous transcription factor as co-activator (ATF3-JunB) or co-repressor (ATF3-NFκB). Moreover, loss of KAI1 expression significantly abrogated NDRG1-mediated metastatic suppression in vitro as well as in a spontaneous metastasis animal model, indicating that KA11 is a functional downstream target of the NDRG1 pathway. Our result of immunohistochemical analysis showed that loss of NDRG1 and KAI1 occurs in parallel as prostate cancer progresses. We also found that a combined expression status of these two genes serves as a strong independent prognostic marker to predict metastasis-free survival of prostate cancer patients. Taken together, our result revealed a novel regulatory network of two metastasis suppressor genes, NDRG1 and KAI1, which together concerted metastasis-suppressive activities through an intrinsic transcriptional cascade.


Journal of Biological Chemistry | 2011

KAI1 is engaged in NDRG1-mediated metastasis suppression through ATF3-NFkappaB complex in human prostate cancer

Wen Liu; Megumi Iiizumi-Gairani; Hiroshi Okuda; Aya Kobayashi; Sudha K. Pai; Puspa R. Pandey; Fei Xing; Koji Fukuda; Vishnu Modur; Shigeru Hirota; Kazuyuki Suzuki; Toshimi Chiba; Masaki Endo; Tamotsu Sugai; Kounosuke Watabe

NDRG1 and KAI1 belong to metastasis suppressor genes, which impede the dissemination of tumor cells from primary tumors to distant organs. Previously, we identified the metastasis promoting transcription factor, ATF3, as a downstream target of NDRG1. Further analysis revealed that the KAI1 promoter contained a consensus binding motif of ATF3, suggesting a possibility that NDRG1 suppresses metastasis through inhibition of ATF3 expression followed by activation of the KAI1 gene. In this report, we found that ectopic expression of NDRG1 was able to augment endogenous KAI1 gene expression in prostate cancer cell lines, whereas silencing NDRG1 was accompanied with significant decrease in KAI1 expression in vitro and in vivo. In addition, our results of ChIP analysis indicate that ATF3 indeed bound to the promoter of the KAI1 gene. Importantly, our promoter-based analysis revealed that ATF3 modulated KAI1 transcription through cooperation with other endogenous transcription factor as co-activator (ATF3-JunB) or co-repressor (ATF3-NFκB). Moreover, loss of KAI1 expression significantly abrogated NDRG1-mediated metastatic suppression in vitro as well as in a spontaneous metastasis animal model, indicating that KA11 is a functional downstream target of the NDRG1 pathway. Our result of immunohistochemical analysis showed that loss of NDRG1 and KAI1 occurs in parallel as prostate cancer progresses. We also found that a combined expression status of these two genes serves as a strong independent prognostic marker to predict metastasis-free survival of prostate cancer patients. Taken together, our result revealed a novel regulatory network of two metastasis suppressor genes, NDRG1 and KAI1, which together concerted metastasis-suppressive activities through an intrinsic transcriptional cascade.


Oncogene | 2013

Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer.

Puspa R. Pandey; Fei Xing; Sambad Sharma; Sudha K. Pai; Iiizumi-Gairani M; Koji Fukuda; Shigeru Hirota; Yin-Yuan Mo; Kounosuke Watabe

Upregulation of lipogenesis is a hallmark of cancer and blocking the lipogenic pathway is known to cause tumor cell death by apoptosis. However, the exact role of lipogenesis in tumor initiation is as yet poorly understood. We examined the expression profile of key lipogenic genes in clinical samples of ductal carcinoma in situ (DCIS) of breast cancer and found that these genes were significantly upregulated in DCIS. We also isolated cancer stem-like cells (CSCs) from DCIS.com cell line using cell surface markers (CS24−CD44+ESA+) and found that this cell population has significantly higher tumor-initiating ability to generate DCIS compared with the non-stem-like population. Furthermore, the CSCs showed significantly higher level of expression of all lipogenic genes than the counterpart population from non-tumorigenic breast cancer cell line, MCF10A. Importantly, ectopic expression of SREBP1, the master regulator of lipogenic genes, in MCF10A significantly enhanced lipogenesis in stem-like cells and promoted cell growth as well as mammosphere formation. Moreover, SREBP1 expression significantly increased the ability of cell survival of CSCs from MCF10AT, another cell line that is capable of generating DCIS, in mouse and in cell culture. These results indicate that upregulation of lipogenesis is a pre-requisite for DCIS formation by endowing the ability of cell survival. We have also shown that resveratrol was capable of blocking the lipogenic gene expression in CSCs and significantly suppressed their ability to generate DCIS in animals, which provides us with a strong rationale to use this agent for chemoprevention against DCIS.

Collaboration


Dive into the Puspa R. Pandey's collaboration.

Top Co-Authors

Avatar

Fei Xing

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aya Kobayashi

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sudha K. Pai

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Koji Fukuda

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Okuda

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wen Liu

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shigeru Hirota

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar

Yin-Yuan Mo

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sambad Sharma

Southern Illinois University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge