Q. Daniel Wang
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Q. Daniel Wang.
The Astrophysical Journal | 2006
Yang Chen; Q. Daniel Wang; E. V. Gotthelf; Bing Jiang; You-Hua Chu; Robert A. Gruendl
We present a Chandra ACIS observations of N157B, a young supernova remnant (SNR) located in the 30 Doradus star formation region of the Large Magellanic Cloud. This remnant contains the most energetic pulsar known (PSR J053747.39-691020.2; Ė = 4.8 × 1038 ergs s-1), which is surrounded by a X-ray-bright nonthermal nebula that likely represents a toroidal pulsar wind terminal shock observed edge-on. Two of the eight pointlike X-ray sources detected in the observation are shown to have near-IR and optical counterparts (within 05 offsets), which are identified as massive stellar systems in the Cloud. We confirm the nonthermal nature of the comet-shaped X-ray emission feature and show that the spectral steepening of this feature away from the pulsar is quantitatively consistent with synchrotron cooling of shocked pulsar wind particles flowing downstream at a bulk velocity close to the speed of light. Around the cometary nebula we unambiguously detect a spatially resolved thermal component, which accounts for about 1/3 of the total 0.5-10 keV flux from the remnant. This thermal component is distributed among various clumps of metal-enriched plasma embedded in the low surface brightness X-ray-emitting diffuse gas. The relative metal enrichment pattern suggests that the mass of the supernova progenitor is 20 M☉. A comparison of the X-ray data with Hubble Space Telescope optical images now suggests that the explosion site is close to a dense cloud, against which a reflection shock is launched. The interaction between the reflected material and the nebula has likely produced both its cometary shape and the surrounding thermal emission enhancement. SNR N157B is apparently expanding into the hot low-density interior of the surrounding superbubble formed by the young OB association LH 99, as revealed by Spitzer mid-infrared images. This scenario naturally explains the exceptionally large sizes of both the thermal and nonthermal components, as well as the lack of an outer shell of the SNR. However, the real situation in the region is likely to be more complicated. We find that a partially round soft X-ray-emitting clump with distinct spectral properties may result from a separate oxygen-rich remnant. These results provide a rare glimpse into the SNR structure and evolution in a region of recent star formation.
The Astrophysical Journal | 2006
Yangsen Yao; Q. Daniel Wang
X-ray absorption spectroscopy provides a powerful tool in determining the metal abundances in various phases of the interstellar medium (ISM). We present a case study of the sight line toward 4U 1820-303, based on Chandra grating observations. The detection of O I, O II, O III, O VII, O VIII, and Ne IX K? absorption lines allows us to measure the atomic column densities of the neutral, warm ionized, and hot phases of the ISM through much of the Galactic disk. By comparing these measurements with the 21 cm hydrogen emission and with the pulsar dispersion measure, we estimate the mean oxygen abundances in the neutral and total ionized phases as 0.3(0.2, 0.6) and 2.2(1.1, 3.5) in units of Anders & Greversses solar value (90% confidence intervals). This significant oxygen abundance difference is apparently a result of molecule/dust grain destruction and recent metal enrichment in the warm ionized and hot phases. We also measure the column density of neon from its absorption edge and obtain a solar value of the Ne/O ratio accounting for the expected oxygen contained in molecules and dust grains. From a joint analysis of the O VII, O VIII, and Ne IX lines, we obtain the Ne/O abundance ratio of the hot phase as 1.4(0.9, 2.1) solar, which is not sensitive to the exact hot gas temperature distribution assumed. These comparable ISM Ne/O ratios for the different phases are thus considerably less than the value recently inferred from corona emission of solar-like stars.
Archive | 2001
Q. Daniel Wang; E. V. Gotthelf; Cornelia Chesley Lang
Archive | 2011
Mark Morris; Q. Daniel Wang; Feng Yan
Archive | 2010
Elisabeth A. C. Mills; Mark R. Morris; Cornelia Chesley Lang; Angela Stephanie Cotera; Susan Renee Stolovy; H. Dong; Q. Daniel Wang
Archive | 2007
Q. Daniel Wang; H. Dong; Cornelia Chesley Lang
Archive | 2007
Q. Daniel Wang; H. Dong; Cornelia Chesley Lang
Archive | 2006
Cornelia Chesley Lang; F. J. Lu; Q. Daniel Wang; Kelsey I. Clubb
Archive | 2006
Yang Chen; Q. Daniel Wang; E. V. Gotthelf; Bowen Jiang
Archive | 2006
J. Middleditch; Francis E. Marshall; E. V. Gotthelf; Q. Daniel Wang; William W. Zhang