Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Q. Todd Krantz is active.

Publication


Featured researches published by Q. Todd Krantz.


Environmental Health Perspectives | 2011

TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

Mehdi S. Hazari; Najwa Haykal-Coates; Darrell W. Winsett; Q. Todd Krantz; Charly King; Daniel L. Costa; Aimen K. Farraj

Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias. Objective: We hypothesized that increased risk of triggered arrhythmias 1 day after DE exposure is mediated by airway sensory nerves bearing transient receptor potential (TRP) channels [e.g., transient receptor potential cation channel, member A1 (TRPA1)] that, when activated by noxious chemicals, can cause a centrally mediated autonomic imbalance and heightened risk of arrhythmia. Methods: Spontaneously hypertensive rats implanted with radiotelemeters were whole-body exposed to either 500 μg/m3 (high) or 150 μg/m3 (low) whole DE (wDE) or filtered DE (fDE), or to filtered air (controls), for 4 hr. Arrhythmogenesis was assessed 24 hr later by continuous intravenous infusion of aconitine, an arrhythmogenic drug, while heart rate (HR) and electrocardiogram (ECG) were monitored. Results: Rats exposed to wDE or fDE had slightly higher HRs and increased low-frequency:high-frequency ratios (sympathetic modulation) than did controls; ECG showed prolonged ventricular depolarization and shortened repolarization periods. Rats exposed to wDE developed arrhythmia at lower doses of aconitine than did controls; the dose was even lower in rats exposed to fDE. Pretreatment of low wDE–exposed rats with a TRPA1 antagonist or sympathetic blockade prevented the heightened sensitivity to arrhythmia. Conclusions: These findings suggest that a single exposure to DE increases the sensitivity of the heart to triggered arrhythmias. The gaseous components appear to play an important role in the proarrhythmic response, which may be mediated by activation of TRPA1, and subsequent sympathetic modulation. As such, toxic inhalants may partly exhibit their toxicity by lowering the threshold for secondary triggers, complicating assessment of their risk.


American Journal of Respiratory Cell and Molecular Biology | 2012

Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone-Exposed Offspring

Richard L. Auten; M. Ian Gilmour; Q. Todd Krantz; Erin N. Potts; S. Nicholas Mason; W. Michael Foster

Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (AHR) in offspring. To determine if exposure to diesel exhaust (DE) during pregnancy worsened postnatal ozone-induced AHR, timed pregnant C57BL/6 mice were exposed to DE (0.5 or 2.0 mg/m(3)) 4 hours daily from Gestation Day 9-17, or received twice-weekly oropharyngeal aspirations of the collected DE particles (DEPs). Placentas and fetal lungs were harvested on Gestation Day 18 for cytokine analysis. In other litters, pups born to dams exposed to air or DE, or to dams treated with aspirated diesel particles, were exposed to filtered air or 1 ppm ozone beginning the day after birth, for 3 hours per day, 3 days per week for 4 weeks. Additional pups were monitored after a 4-week recovery period. Diesel inhalation or aspiration during pregnancy increased levels of placental and fetal lung cytokines. There were no significant effects on airway leukocytes, but prenatal diesel augmented ozone-induced elevations of bronchoalveolar lavage cytokines at 4 weeks. Mice born to the high-concentration diesel-exposed dams had worse ozone-induced AHR, which persisted in the 4-week recovery animals. Prenatal diesel exposure combined with postnatal ozone exposure also worsened secondary alveolar crest development. We conclude that maternal inhalation of DE in pregnancy provokes a fetal inflammatory response that, combined with postnatal ozone exposure, impairs alveolar development, and causes a more severe and long-lasting AHR to ozone exposure.


Toxicological Sciences | 2012

Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

Christina M. Lamb; Mehdi S. Hazari; Najwa Haykal-Coates; Alex P. Carll; Q. Todd Krantz; Charly King; Darrell W. Winsett; Wayne E. Cascio; Daniel L. Costa; Aimen K. Farraj

Diesel exhaust (DE) is a major contributor to traffic-related fine particulate matter (PM)(2.5). Although inroads have been made in understanding the mechanisms of PM-related health effects, DEs complex mixture of PM, gases, and volatile organics makes it difficult to determine how the constituents contribute to DEs effects. We hypothesized that exposure to particle-filtered DE (fDE; gases alone) will elicit less cardiac effects than whole DE (wDE; particles plus gases). In addition, we hypothesized that spontaneously hypertensive (SH) rats will be more sensitive to the electrocardiographic effects of DE exposure than Wistar Kyoto rats (WKY; background strain with normal blood pressure). SH and WKY rats, implanted with telemeters to monitor electrocardiogram and heart rate (HR), were exposed once for 4 h to 150 μg/m(3) or 500 μg/m(3) of wDE (gases plus PM) or fDE (gases alone) DE, or filtered air. Exposure to fDE, but not wDE, caused immediate electrocardiographic alterations in cardiac repolarization (ST depression) and atrioventricular conduction block (PR prolongation) as well as bradycardia in SH rats. Exposure to wDE, but not fDE, caused postexposure ST depression and increased sensitivity to the pulmonary C fiber agonist capsaicin in SH rats. The only notable effect of DE exposure in WKY rats was a decrease in HR. Taken together, hypertension may predispose to the potential cardiac effects of DE and components of DE may have divergent effects with some eliciting immediate irritant effects (e.g., gases), whereas others (e.g., PM) trigger delayed effects potentially via separate mechanisms.


Toxicology Letters | 2010

Effects of prenatal diesel exhaust inhalation on pulmonary inflammation and development of specific immune responses.

Tuya Sharkhuu; Donald L. Doerfler; Q. Todd Krantz; Robert W. Luebke; William P. Linak; M. Ian Gilmour

There is increasing evidence that exposure to air pollutants during pregnancy can result in a number of deleterious effects including low birth weight and the incidence of allergic asthma. To investigate the in utero effects of DE exposure, timed pregnant BALB/c mice were exposed to 0, 0.8 or 3.1 mg/m(3) of DE during gestation days (GD) 9 to GD 18. The number of successful pregnancies was 15/20 in the air controls and 10/20 in each of the diesel exposures. Immune function in the 6-week-old offspring as determined by development of delayed type hypersensitivity (DTH) reactions to bovine serum albumin (BSA), antibody titers to injected sheep red blood cells (SRBC), splenic T cells expressing CD45(+)CD3(+)CD8(+) and CD3(+)CD25(+), and mRNA expression of TNF-alpha, TLR2, SP-A, TGF-beta and Foxp3 in the lung were not affected by prenatal DE exposure. On the other hand, lung TLR4 mRNA expression, the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and splenic T cells expressing CD45(+)CD3(+)CD4(+) and CD4(+)CD25(+) were differentially affected depending on the DE concentration and gender. When additional groups of mice were sensitized and challenged via the respiratory tract with ovalbumin to induce allergic airway inflammation, female mice had higher protein levels in the BALF compared to males and this was reduced by prenatal exposure to either concentration of DE. No other changes in allergen-induced immunity, lung function or severity of inflammation were noted. Collectively, the results show that in utero exposure to DE altered some baseline inflammatory indices in the lung in a gender-specific manner, but had no effect on development of specific immune responses to experimental antigens, or the severity of allergic lung inflammation.


Toxicological Sciences | 2009

Acute Perchloroethylene Exposure Alters Rat Visual-Evoked Potentials in Relation to Brain Concentrations

William K. Boyes; Mark Bercegeay; Wendy M. Oshiro; Q. Todd Krantz; Elaina M. Kenyon; Philip J. Bushnell; Vernon A. Benignus

These experiments sought to establish a dose-effect relationship between the concentration of perchloroethylene (PCE) in brain tissue and concurrent changes in visual function. A physiologically based pharmacokinetic (PBPK) model was implemented to predict concentrations of PCE in the brains of adult Long-Evans rats following inhalation exposure. The model was evaluated for performance against tissue concentrations from exposed rats (n = 40) and data from the published scientific literature. Visual function was assessed using steady-state pattern-elicited visual-evoked potentials (VEPs) recorded from rats during exposure to air or PCE in two experiments (total n = 84) with concentrations of PCE ranging from 250 to 4000 ppm. VEP waveforms were submitted to a spectral analysis in which the major response component, F2, occurring at twice the visual stimulation rate, was reduced in amplitude by PCE exposure. The F2 amplitudes were transformed to an effect-magnitude scale ranging from 0 (no effect) to 1 (maximum possible effect), and a logistical function was fit to the transformed values as a function of estimated concurrent brain PCE concentrations. The resultant function described a dose-response relationship between brain PCE concentration and changes in visual function with an ED(10) value of approximately 0.684 mg/l and an ED(50) value of approximately 46.5 mg/l. The results confirmed that visual function was disrupted by acute exposure to PCE, and the PBPK model and logistic model together could be used to make quantitative estimates of the magnitude of deficit to be expected for any given inhalation exposure scenario.


Toxicological Sciences | 2013

An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

Alex P. Carll; Mehdi S. Hazari; Christina M. Perez; Q. Todd Krantz; Charly King; Najwa Haykal-Coates; Wayne E. Cascio; Daniel L. Costa; Aimen K. Farraj

Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure-prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m(3) fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance.


Environmental Health Perspectives | 2012

Dobutamine "Stress" Test and Latent Cardiac Susceptibility to Inhaled Diesel Exhaust in Normal and Hypertensive Rats

Mehdi S. Hazari; Justin Callaway; Darrell W. Winsett; Christina M. Lamb; Najwa Haykal-Coates; Q. Todd Krantz; Charly King; Daniel L. Costa; Aimen K. Farraj

Background: Exercise “stress” testing is a screening tool used to determine the amount of stress for which the heart can compensate before developing abnormal rhythm or ischemia, particularly in susceptible persons. Although this approach has been used to assess risk in humans exposed to air pollution, it has never been applied to rodent studies. Objective: We hypothesized that a single exposure to diesel exhaust (DE) would increase the risk of adverse cardiac events such as arrhythmia and myocardial ischemia in rats undergoing a dobutamine challenge test, which can be used to mimic exercise-like stress. Methods: Wistar-Kyoto normotensive (WKY) and spontaneously hypertensive (SH) rats implanted with radiotelemeters and a chronic intravenous catheter were whole-body exposed to 150 μg/m3 DE for 4 hr. Increasing doses of dobutamine, a β1-adrenergic agonist, were administered to conscious unrestrained rats 24 hr later to elicit the cardiac response observed during exercise while heart rate (HR) and electrocardiogram (ECG) were monitored. Results: A single exposure to DE potentiated the HR response of WKY and SH rats during dobutamine challenge and prevented HR recovery at rest. During peak challenge, DE-exposed SH rats had lower overall HR variability when compared with controls, in addition to transient ST depression. All DE-exposed animals also had increased arrhythmias. Conclusions: These results are the first evidence that rats exhibit stress-induced cardiac dysrhythmia and ischemia sensitivity comparable to humans after a single exposure to a toxic air pollutant, particularly when in the presence of underlying cardiovascular disease. Thus, exposure to low concentrations of air pollution can impair the heart’s ability to respond to stress and increase the risk of subsequent triggered dysfunction.


Neurotoxicology and Teratology | 2008

Characterization of the effects of inhaled perchloroethylene on sustained attention in rats performing a visual signal detection task

Wendy M. Oshiro; Q. Todd Krantz; Philip J. Bushnell

The aliphatic hydrocarbon perchloroethylene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (SDT). Due to its similarities in physiological effect to toluene and trichloroethylene (TCE), two other commonly used volatile organic compounds (VOCs) known to reduce attention in rats, we hypothesized (1) that acute inhalation of PCE (0, 500, 1000, 1500 ppm) would disrupt performance of the SDT in rats; (2) that impaired accuracy would result from changes in attention to the visual signal; and (3) that these acute effects would diminish upon repetition of exposure. PCE impaired performance of the sustained attention task as evidenced by reduced accuracy [P(correct): 500 to 1500 ppm], elevated response time [RT: 1000 and 1500 ppm] and reduced number of trials completed [1500 ppm]. These effects were concentration-related and either increased (RT and trial completions) or remained constant [P(correct)] across the 60-min test session. The PCE-induced reduction in accuracy was primarily due to an increase in false alarms, a pattern consistent with reduced attention to the signal. A repeat of the exposures resulted in smaller effects on these performance measures. Thus, like toluene and TCE, inhaled PCE acutely impaired sustained attention in rats, and its potency weakened upon repetition of the exposure.


Environmental Science & Technology | 2015

Differential effects of particulate matter upwind and downwind of an urban freeway in an allergic mouse model.

Marie A. McGee; Ali S. Kamal; John K. McGee; Charles E. Wood; Janice A. Dye; Q. Todd Krantz; Matthew S. Landis; M. Ian Gilmour; Stephen H. Gavett

Near-road exposure to air pollutants has been associated with decreased lung function and other adverse health effects in susceptible populations. This study was designed to investigate whether different types of near-road particulate matter (PM) contribute to exacerbation of allergic asthma. Samples of upwind and downwind coarse, fine, and ultrafine PM were collected using a wind direction-actuated ChemVol sampler at a single site 100 m from Interstate-96 in Detroit, MI during winter 2010/2011. Upwind PM was enriched in crustal and wood combustion sources while downwind PM was dominated by traffic sources. Control and ovalbumin (OVA)-sensitized BALB/cJ mice were exposed via oropharyngeal (OP) aspiration to 20 or 100 μg of each PM sample 2 h prior to OP challenge with OVA. In OVA-allergic mice, 100 μg of downwind coarse PM caused greater increases than downwind fine/ultrafine PM in bronchoalveolar lavage neutrophils, eosinophils, and lactate dehydrogenase. Upwind fine PM (100 μg) produced greater increases in neutrophils and eosinophils compared to other upwind size fractions. Cytokine (IL-5) levels in BAL fluid also increased markedly following 100 μg downwind coarse and downwind ultrafine PM exposures. These findings indicate coarse PM downwind and fine PM upwind of an interstate highway promote inflammation in allergic mice.


Environmental Science & Technology | 2015

Characterization of Size-Fractionated Airborne Particles Inside an Electronic Waste Recycling Facility and Acute Toxicity Testing in Mice

Yong Ho Kim; Barbara Wyrzykowska-Ceradini; Abderrahmane Touati; Q. Todd Krantz; Janice A. Dye; William P. Linak; Brian K. Gullett; M. Ian Gilmour

Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.

Collaboration


Dive into the Q. Todd Krantz's collaboration.

Top Co-Authors

Avatar

Charly King

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

M. Ian Gilmour

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Aimen K. Farraj

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Mehdi S. Hazari

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Najwa Haykal-Coates

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Costa

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William P. Linak

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge