Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qazi M. Ashraf is active.

Publication


Featured researches published by Qazi M. Ashraf.


Brain Research | 2001

Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate.

Sudha Ravishankar; Qazi M. Ashraf; Karen I. Fritz; Om P. Mishra; Maria Delivoria-Papadopoulos

This study tests the hypothesis that administration of magnesium sulfate, an antagonist of the NMDA receptor ion-channel, will prevent the hypoxia-induced alteration in the expression and the ratio of Bax and Bcl-2 proteins in cerebral cortical neuronal nuclear membranes. Anesthetized, ventilated and instrumented newborn piglets were divided into three groups: normoxic controls (Nx), untreated hypoxic (Hx), and magnesium sulfate-treated hypoxic (Mg-Hx) groups. Cerebral hypoxia was induced by lowering the FiO2 (0.05-0.07) for 1 h and the cerebral cortex was harvested immediately for isolation of neuronal nuclei and hypoxia was confirmed biochemically by a decrease in the tissue levels of ATP and phosphocreatine (PCr). Brain tissue PCr (micromol/g brain) was 2.74+/-0.77 (Nx), 0.38+/-0.09 (Hx, P<0.05 vs. Nx) and 0.69+/-0.60 (Mg-Hx, P<0.05 vs. Nx). The density of immunoblotted proteins was expressed as absorbance (Axmm(2)). The expression of Bax protein (Axmm(2)) was 222+/-31 (Nx), 279+/-32 (Hx), and 148+/-44 (Mg-Hx, P<0.05 vs. Hx). Bcl-2 protein expression was 77+/-1.0 (Nx), 37+/-5.0 (Hx) and 46+/-15 (Mg-Hx, P<0.05 vs. Nx). The ratio of Bax to Bcl-2 proteins increased more than twofold during hypoxia as compared to normoxia (7:1 Hx vs. 3:1 Nx). However, in the magnesium sulfate-treated group the Bax:Bcl-2 ratio was similar to normoxic controls. The data demonstrate that magnesium sulfate treatment prevents both the hypoxia-induced increase in Bax protein expression and the alteration of Bax:Bcl-2 protein ratios. We suggest that magnesium sulfate treatment before and during hypoxia may decrease hypoxia-induced programmed cell death by maintaining the normal ratio of Bax to Bcl-2 proteins.


Neuroscience | 2002

Nitration is a mechanism of regulation of the NMDA receptor function during hypoxia

Santina Zanelli; Qazi M. Ashraf; Om P. Mishra

The present study tested the hypothesis that nitration is a mechanism of hypoxia-induced modification of the N-methyl-D-aspartate (NMDA) receptor. To test this hypothesis the effect of hypoxia on the nitration of the NR1, NR2A and NR2B subunits of the NMDA receptor was determined. Furthermore, the effect of administration of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (NNLA) on the hypoxia-induced nitration of the NMDA receptor subunits as well as the NMDA receptor-mediated Ca2+ influx, an index of NMDA receptor-ion channel function, were determined in cortical synaptosomes. Studies were performed in newborn piglets divided into normoxic, hypoxic and hypoxic-NNLA groups. Hypoxia was induced by decreasing the FiO(2) to 0.07-0.09 for 60 min. Cerebral tissue hypoxia was confirmed by determining the levels of high energy phosphates ATP and phosphocreatine. Nitration of the NMDA receptor subunits was determined by immunoprecipitation using specific antibodies and western blot analysis. NMDA receptor-ion channel-mediated Ca2+ influx was determined using 45Ca2+. There was a significant increase in the nitrated NR1, NR2A and NR2B subunits following hypoxia: 104+/-11 vs. 275+/-18 optical density (OD)xmm(2) for NR1 (P<0.05), 212+/-36 vs. 421+/-16 ODxmm(2) for NR2A (P<0.05) and 246+/-44 vs. 360+/-26 ODxmm(2) for NR2B (P<0.05). This increase in nitrated NR1, NR2A and NR2B subunits of the NMDA receptor was prevented by the administration of NNLA prior to hypoxia (NR1 160+/-19, P=NS, NNLA vs. normoxic; NR2A 304+/-49, P=NS, NNLA vs. normoxic, and NR2B 274+/-19, P=NS, NNLA vs. normoxic). The increase in nitration of the NR1, NR2A and NR2B subunits of the NMDA receptor increased as a function of decreased cerebral high-energy phosphates, ATP and phosphocreatine, during hypoxia. Furthermore, NOS blockade prior to hypoxia resulted in prevention of the hypoxia-induced increase in NMDA receptor-mediated Ca2+ influx. Our results demonstrate that hypoxia results in increased nitration of the NMDA receptor subunits and that administration of an NOS inhibitor prior to hypoxia prevents the hypoxia-induced nitration of the NMDA receptor subunits as well as the hypoxia-induced increase in NMDA receptor-mediated Ca2+ influx. We conclude that nitration is a mechanism of modification of the NMDA receptor function during hypoxia in the newborn piglet brain.


Neuroscience | 2002

Phosphorylation of cAMP response element binding (CREB) protein during hypoxia in cerebral cortex of newborn piglets and the effect of nitric oxide synthase inhibition

Om P. Mishra; Qazi M. Ashraf; Maria Delivoria-Papadopoulos

Previous studies have shown that hypoxia results in increased phosphorylation of CREB protein that mediates gene expression including that of the pro-apoptotic gene bax. We also have shown that hypoxia-induced expression of Bax protein is prevented by blocking nitric oxide synthase (NOS). The present study tests the hypothesis that inhibition of NOS by N-nitro-L-arginine (NNLA) will prevent the hypoxia-induced increased phosphorylation of CREB protein in neuronal nuclei of newborn piglets. To test this hypothesis, phosphorylation of CREB protein was assessed by immunoblotting neuronal nuclear proteins from five normoxic (Nx), 10 hypoxic (Hx) and five Hx-NNLA-treated 3-5-day-old piglets. NNLA (40 mg/kg) or saline was infused over 60 min prior to induction of hypoxia. Hypoxia was achieved by reducing the FiO(2) (0.15 to 0.05) for 60 min and documented biochemically by ATP and phosphocreatine (PCr) levels. Neuronal nuclei were isolated using discontinuous sucrose gradient centrifugation and purified. Nuclear proteins were separated on 12% sodium dodecylsulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, reacted with anti-phosphorylated CREB protein antibody and conjugated with horseradish peroxidase antibody. Protein bands were detected using the enhanced chemiluminescence method and quantitated by imaging densitometry. Protein density was expressed as absorbance (OD)xmm(2). ATP levels (micromol/g brain) were 4.3+/-0.6 in the Nx group, 1.3+/-0.5 in the Hx group (P<0.001) and 1.1+/-0.2 in the Hx-NNLA group (P<0.001 vs. Nx and Hx). Similarly, PCr levels (micromol/g brain) were 3.8+/-0.6 in the Nx group, 0.7+/-0.2 in the Hx group (P<0.001) and 0.6+/-0.1 in the Hx-NNLA group (P<0.001 vs. Nx and Hx). Density of phosphorylated CREB protein (ODxmm(2)) was 134.2+/-52.4 in the Nx group compared to 746.0+/-76.8 in the Hx group (P<0.05) and 491.1+/-40.9 in the Hx-NNLA group (P<0.05 Hx). The data show that NOS inhibition attenuates the hypoxia-induced increase in CREB protein phosphorylation in the cerebral cortex of newborn piglets.


Brain Research | 2002

Nitric oxide-mediated expression of Bax protein and DNA fragmentation during hypoxia in neuronal nuclei from newborn piglets

Alan B. Zubrow; Maria Delivoria-Papadopoulos; Qazi M. Ashraf; Juan R. Ballesteros; Karen I. Fritz; Om P. Mishra

The present study tests the hypothesis that nitric oxide mediates the hypoxia-induced increase in expression of Bax and in DNA fragmentation in the cerebral cortex of newborn piglets, and that administration of N-nitro-L-arginine (NNLA), a nitric oxide synthase inhibitor, will prevent a change in hypoxia-induced expression of apoptotic genes and DNA damage. Piglets were assigned to normoxic, hypoxic, or NNLA-pretreated hypoxic groups. Cerebral tissue hypoxia was documented biochemically by measuring ATP and phosphocreatine (PCr) levels. Cerebral cortical neuronal nuclei were isolated and nuclear proteins were separated electrophoretically and probed with specific antibodies against Bcl-2 or Bax proteins. Neuronal nuclear DNA from normoxic, hypoxic, and NNLA-pretreated hypoxic animals was isolated, separated by electrophoresis on 1% agarose gel and stained with ethidium bromide. Cerebral hypoxia resulted in an increase in nuclear membrane Bax protein levels from 121.33+/-47.7 optical density (OD)xmm(2) in normoxic to 273.67+/-67.3 ODxmm(2) in hypoxic group (P<0.05 vs. normoxic), but levels in NNLA-pretreated hypoxic group were 155.78+/-48.3 ODxmm(2) (P<0.05 vs. hypoxic, P=NS vs. normoxic). Similarly, cerebral hypoxia resulted in the density of DNA fragments increasing from 1530.3+/-309.8 OD/mm(2) in the normoxic group to 5383.3+/-775 OD/mm(2) in the hypoxic group (P<0.05), while levels in NNLA-pretreated hypoxic group were 3574.0+/-952 OD/mm(2) (P<0.05 compared to hypoxic and normoxic groups). The data show that NNLA-pretreatment prevents the hypoxia-induced increase in Bax expression and DNA fragmentation demonstrating that the hypoxia-induced Bax gene expression and the DNA fragmentation are NO-mediated.


Neuroscience Letters | 2002

Nitric oxide-mediated Ca2+/calmodulin-dependent protein kinase IV activity during hypoxia in neuronal nuclei from newborn piglets.

Alan B. Zubrow; Maria Delivoria-Papadopoulos; Qazi M. Ashraf; Karen I. Fritz; Om P. Mishra

The present study tested the hypothesis that hypoxia results in increased Ca(2+)/calmodulin-dependent protein kinase IV (CaM kinase IV) activity and that inhibition of nitric oxide (NO) synthase by N-nitro-L-arginine (NNLA) prevents the hypoxia- induced increase in neuronal nuclear CaM kinase IV activity in newborn piglets. CaM kinase IV activity was determined in normoxic (Nx), hypoxic (Hx), and NNLA-pretreated Hx piglets. Cerebral hypoxia was confirmed biochemically. There was a significant difference between CaM kinase IV activity (pmoles/mg protein/min) in Nx (285.22+/-86.12), Hx (494.77+/-99.79, P<0.05 vs. Nx), and NNLA-pretreated Hx (249.55+/-53.85)(P=NS vs. Nx, P<0.05 vs. Hx) animals. The results demonstrate that the cerebral tissue hypoxia results in an increase in neuronal nuclear CaM kinase IV activity, and the hypoxia-induced increase in CaM kinase IV activity is NO-mediated.


Neurochemical Research | 2002

Effect of Hypoxia on Caspase-3, -8, and -9 Activity and Expression in the Cerebral Cortex of Newborn Piglets

Poonam Khurana; Qazi M. Ashraf; Om P. Mishra; Maria Delivoria-Papadopoulos

Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.


Neuroscience | 2004

Nitric oxide-mediated activation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of newborn piglets

Om P. Mishra; Alan B. Zubrow; Qazi M. Ashraf

Previous studies have shown that mitogen-activated protein kinases, such as extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK), mediate signal transduction from cell surface receptors to the nucleus and phosphorylate anti-apoptotic proteins thereby regulating programmed cell death. The present study tests the hypotheses that hypoxia activates ERK and JNK in neuronal nuclei of newborn piglets and the hypoxia-induced activation of ERK and JNK is mediated by nitric oxide (NO). Activated ERK and JNK were assessed by determining phosphorylated ERK and JNK using immunoblotting in six normoxic (Nx) and 10 hypoxic (Hx) and five N-nitro-L-arginine (a NOS inhibitor, 40 mg/kg,) -pretreated hypoxic (N-nitro-L-arginine [NNLA]-Hx) 3-5 day old piglets. Hypoxia was induced by decreasing inspired oxygen from 21% to 7% for 60 min. Cerebral tissue hypoxia was documented biochemically by determining the tissue levels of ATP and phosphocreatine (PCr). Cortical neuronal nuclei were isolated and the nuclear protein was analyzed for activated ERK and JNK using anti-phosphorylated ERK and JNK antibodies. Protein bands were detected using enhanced chemiluminescence method and analyzed by imaging densitometry. Protein density was expressed as absorbance ODxmm(2). ATP levels were 4.57+/-0.45 micromoles/g brain in the Nx group, 1.29+/-0.23 micromoles/g brain in the Hx group (P<0.05 vs Nx) and 1.50+/-0.14 micromoles/g brain in the NNLA-Hx group (P<0.05 vs Nx). PCr levels were 3.77+/-0.36 micromoles/g brain in the Nx group, 0.77+/-0.13 micromoles/g brain in the hypoxic group (P<0.05) and 1.02+/-0.24 in the NNLA-Hx group (P<0.05 vs Nx). Density of phosphorylated ERK protein was 170.5+/-53.7 ODxmm(2) in the Nx group as compared with 419.6+/-63.9 ODxmm(2) in the hypoxic group (P<0.001 vs Nx) and 270.0+/-28.7 in the NNLA-Hx group (P<0.002 vs Hx). Density of phosphorylated JNK protein was 172.8+/-42.8 ODxmm(2) in the normoxic group as compared with 364.6+/-60.1 ODxmm(2) in the Hx group (P<0.002) and 254.8+/-24.8 in the NNLA-Hx group (P<0.002 vs Hx). The data demonstrate increased phosphorylation of ERK and JNK during hypoxia indicating that hypoxia results in activation of ERK and JNK in neuronal nuclei of newborn piglets. The administration of NNLA, a NOS inhibitor, prevented the hypoxia-induced phosphorylation of ERK and JNK indicating that the hypoxia-induced activation of ERK and JNK in the cerebral cortical nuclei of newborn piglets is NO-mediated


Journal of Neuropathology and Experimental Neurology | 2006

Altered Cellular Distribution and Subcellular Sorting of γ-Tubulin in Diffuse Astrocytic Gliomas and Human Glioblastoma Cell Lines

Christos D. Katsetos; Goutham Reddy; Eduarda Dráberová; Barbora Šmejkalová; Luis Del Valle; Qazi M. Ashraf; Ashot Tadevosyan; Karina Yelin; Theodoros Maraziotis; Om P. Mishra; Sverre Mørk; Agustin Legido; Jonathan Nissanov; Peter W. Baas; Jean-Pierre de Chadarévian; Pavel Dráber

Centrosome amplification is a pivotal mechanism underlying tumorigenesis but its role in gliomas is underinvestigated. The present study specifically examines the expression and distribution of the centrosome-associated cytoskeletal protein &ggr;-tubulin in 56 primary diffuse astrocytic gliomas (grades II-IV) and in 4 human glioblastoma cell lines (U87MG, U118MG, U138MG, and T98G). Monoclonal anti-peptide antibodies recognizing epitopes in C-terminal or N-terminal domains of the &ggr;-tubulin molecule were used in immunohistochemical, immunofluorescence, and immunoblotting studies. In tumors in adults (n = 46), varying degrees of localization were detected in all tumor grades, but immunoreactivity was significantly increased in high-grade anaplastic astrocytomas and glioblastomas multiforme as compared to low-grade diffuse astrocytomas (p = 0.0001). A similar trend was noted in diffuse gliomas in children but the sample of cases was too small as to be statistically meaningful. Two overlapping patterns of ectopic cellular localization were identified in both primary tumors and glioblastoma cell lines: A punctate pattern, in which &ggr;-tubulin was partially co-distributed with pericentrin in the pericentriolar region, and a diffuse pattern, independent of pericentrin staining, denoting a soluble pool of &ggr;-tubulin. Cellular &ggr;-tubulin was detected in both soluble and insoluble (nocodazole-resistant) fractions of glioblastoma cells. Divergent localizations of &ggr;-tubulin and pericentrin suggest a differential distribution of these 2 centrosome-associated proteins in glioblastoma cell lines. Our results indicate that overexpression and ectopic cellular distribution of &ggr;-tubulin in astrocytic gliomas may be significant in the context of centrosome protein amplification and may be linked to tumor progression and anaplastic potential.


Neurochemical Research | 2001

Phosphorylation of Bcl-2 and Bax proteins during hypoxia in newborn piglets

Qazi M. Ashraf; Santina Zanelli; Om P. Mishra; Maria Delivoria-Papadopoulos

Studies indicate that phosphorylated Bcl-2 cannot form a heterodimer with Bax and thus may lose its antiapoptotic potential. The present study tests the hypothesis that graded hypoxia in cerebral tissue induces the phosphorylation of Bcl-2, thus altering the heterodimerization of Bcl-2 with Bax and subsequently leading to apoptosis. Anesthetized, ventilated newborn piglets were assigned to a normoxic and a graded hypoxic group. Cerebral cortical neuronal nuclei were isolated and immunoprecipitated; immune complexes were separated and reacted with Bcl-2 and Bax specific antibodies. The results show an increased level of serine/tyrosine phosphorylated Bcl-2 in nuclear membranes of hypoxic animals. The level of phosphorylated Bcl-2 protein increased linearly with decrease in tissue PCr. The level of phosphorylated Bax in the neuronal nuclear membranes was independent of cerebral tissue PCr. The data shows that during hypoxia, there is increased phosphorylation of Bcl-2, which may prevent its heterodimerization with Bax and lead to increased proapoptotic activity due to excess Bax in the hypoxic brain. Further increased phosphorylation of Bcl-2 may alter the Bcl-2/Bax-dependent antioxidant, lipid peroxidation and pore forming activity, as well as the regulation of intranuclear Ca2+ and caspase activation pathways. We speculate that increased phosphorylation of Bcl-2 in neuronal nuclear membranes is a potential mechanism of programmed cell death activation in the hypoxic brain.


Neuroscience Letters | 2000

Peroxynitrite-induced modification of the N-methyl-D-aspartate receptor in the cerebral cortex of the guinea pig fetus at term.

Santina Zanelli; Qazi M. Ashraf; Maria Delivoria-Papadopoulos; Om P. Mishra

The present study tests the hypothesis that nitration is a potential mechanism of N-methyl-D-aspartate (NMDA) receptor modification, by assessing the effect of peroxynitrite in vitro on the glutamate and ion-channel sites of the NMDA receptor in the fetal guinea pig. Nitration of NMDA receptor subunits was confirmed by Western blot. Following peroxynitrite exposure, (3)H-MK-801 bindings show an increase in the B(max) and a decrease in the K(d), while (3)H-glutamate bindings show a decrease in the K(d) with no change in the B(max). We conclude that peroxynitrite regulates the NMDA receptor function by increasing the affinity of the ion-channel and glutamate sites, and by exposing additional ion-channel sites. We propose that nitration of the NMDA receptor is a potential mechanism for the regulation of the receptor during hypoxia.

Collaboration


Dive into the Qazi M. Ashraf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen I Fritz

Thomas Jefferson University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna Kubin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge