Qi Cui
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qi Cui.
Molecular and Cellular Neuroscience | 2003
Qi Cui; Henry K. Yip; Robert Chunhua Zhao; Kf So; Alan R. Harvey
In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cAMP analogue (CPT-cAMP) on the regeneration of axotomized rat retinal ganglion cell (RGC) axons into peripheral nerve autografts. Elevation of cAMP alone did not significantly increase RGC survival or the number of regenerating RGCs. Ciliary neurotrophic factor increased RGC viability and axonal regrowth, the latter effect substantially enhanced by coapplication with CPT-cAMP. Under these conditions over 60% of surviving RGCs regenerated their axons. Neurotrophin-4/5 injections also increased RGC viability, but there was reduced long-distance axonal regrowth into grafts, an effect partially ameliorated by cAMP elevation. Thus, cAMP can act cooperatively with appropriate neurotrophic factors to promote axonal regeneration in the injured adult mammalian central nervous system.
Gene Therapy | 2006
Sarah G Leaver; Qi Cui; Gary W Plant; Ajanthy Arulpragasam; S Hisheh; Joost Verhaagen; Alan R. Harvey
We compared the effects of intravitreal injection of bi-cistronic adeno-associated viral (AAV-2) vectors encoding enhanced green fluorescent protein (GFP) and either ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43) on adult retinal ganglion cell (RGC) survival and regeneration following (i) optic nerve (ON) crush or (ii) after ON cut and attachment of a peripheral nerve (PN). At 7 weeks after ON crush, quantification of βIII-tubulin immunostaining revealed that, compared to AAV-GFP controls, RGC survival was not enhanced by AAV-GAP43-GFP but was increased in AAV-CNTF-GFP (mean RGCs/retina: 17 450±358 s.e.m.) and AAV-BDNF-GFP injected eyes (10 200±4064 RGCs/retina). Consistent with increased RGC viability in AAV-CNTF-GFP and AAV-BDNF-GFP injected eyes, these animals possessed many βIII-tubulin- and GFP-positive fibres proximal to the ON crush. However, only in the AAV-CNTF-GFP group were regenerating RGC axons seen in distal ON (1135±367 axons/nerve, 0.5 mm post-crush), some reaching the optic chiasm. RGCs were immunoreactive for CNTF and quantitative RT-PCR revealed a substantial increase in CNTF mRNA expression in retinas transduced with AAV-CNTF-GFP. The combination of AAV-CNTF-GFP transduction of RGCs with autologous PN-ON transplantation resulted in even greater RGC survival and regeneration. At 7 weeks after PN transplantation there were 27 954 (±2833) surviving RGCs/retina, about 25% of the adult RGC population. Of these, 13 352 (±1868) RGCs/retina were retrogradely labelled after fluorogold injections into PN grafts. In summary, AAV-mediated expression of CNTF promotes long-term survival and regeneration of injured adult RGCs, effects that are substantially enhanced by combining gene and cell-based therapies/interventions.
The Journal of Neuroscience | 2004
Kevin Park; Jian Min Luo; Susan Hisheh; Alan R. Harvey; Qi Cui
We have shown previously that intraocular elevation of cAMP using the cAMP analog 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) failed to promote axonal regeneration of axotomized adult retinal ganglion cells (RGCs) into peripheral nerve (PN) grafts but significantly potentiated ciliary neurotrophic factor (CNTF)-induced axonal regeneration. Using the PN graft model, we now examine the mechanisms underlying spontaneous and CNTF/CPT-cAMP-induced neuronal survival and axonal regrowth. We found that blockade of the cAMP pathway executor protein kinase A (PKA) using the cell-permeable inhibitor KT5720 did not affect spontaneous survival and axonal regeneration but essentially abolished the CNTF/CPT-cAMP-induced RGC survival and axonal regeneration. Blockade of CNTF signaling pathways such as phosphotidylinositol 3-kinase (PI3K)/akt by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) by 2-(2-diamino-3-methoxyphenyl-4H-1-benzopyran-4-one (PD98059), or Janus kinase (JAK)/signal transducer and activators of transcription (STAT3) by tyrphostin AG490 also blocked the CNTF/CPT-cAMP-dependent survival and regeneration effects. PKA activity assay and Western blots showed that KT5720, LY294002, and PD98059 almost completely inhibited PKA, PI3K/akt, and MAPK/ERK signal transduction, respectively, whereas AG490 substantially decreased JAK/STAT3 signal transduction. Intraocular injection of CPT-cAMP resulted in a small PKA-dependent increase in CNTF receptor α mRNA expression in the retinas, an effect that may facilitate CNTF action on survival and axonal regeneration. Surprisingly, in the absence of CNTF/CPT-cAMP, LY294002, PD98059, and AG490, but not KT5720, significantly enhanced spontaneous RGC survival, suggesting differential roles of these pathways in RGC survival under different conditions. Our data suggest that CNTF/CPT-cAMP-induced RGC survival and axonal regeneration are a result of multiple pathway actions, with PKA as an essential component, but that these pathways can function in an antagonistic manner under different conditions.
The Journal of Neuroscience | 1995
Qi Cui; Alan R. Harvey
Removal of the superior colliculus (SC) in neonatal Wistar rats results in a rapid loss of retinal ganglion cells (RGCs). There is an early twofold increase in RGC death 4–8 hr postlesion (PL) followed by a later 10–11-fold increase in pyknosis about 24 hr PL. We have now used neurotrophic factors (BDNF, NT-4/5, NT-3, NGF, LIF), glutamate receptor antagonists (MK-801, DNQX, CNQX), an antioxidant (N-ace-tyl-L- cysteine), and an NOS inhibitor (L-NAME) to determine whether the early and late phases of lesion-induced RGC death involved similar or different mechanisms. Normal and pyknotic nuclei of tectally projecting RGCs were visualized by injecting the left s.c. of 2 d old rats with diamidino yellow (DY). Two days later the injection site was removed. In most rats, right eyes were injected with factors immediately after the s.c. ablation. Rats were perfused either 6 or 24 hr PL. In the latter group a second intravitreal injection of the appropriate factor was sometimes made 12 hr PL. NT- 4/5 and BDNF significantly decreased RGC pyknosis 6 and 24 hr PL, whereas NT-3 was only protective 6 hr PL. LIF slightly reduced RGC death 24 hr PL, but NGF had no influence on RGC survival at either time point. NT-4/5 also reduced the rate of naturally occurring RGC death. MK-801, DNQX, CNQX, N-acetylcysteine, and L-NAME all prevented the early lesion-induced increase in RGC death but had no significant effect on RGC death measured 24 hr PL; none of these factors significantly reduced the rate of naturally occuring RGC death. Cycloheximide, shown previously to reduce RGC pyknosis 24 hr PL, did not prevent RGC death 6 hr PL. The data indicate that there are at least two mechanisms involved in RGC death after neonatal target ablation. The early increase is related to excitotoxic effects mediated by glutamate receptors and involves NOS and the production of free radicals. We found no evidence that RGC death measured 24 hr PL is dependent on these processes, but the later death does require protein synthesis and, most likely, the activation of an endogenous suicide program. NT-4/5 and BDNF protected RGCs from both types of lesion- induced death.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Yuqin Yin; Qi Cui; Hui-ya Gilbert; Yang Yang; Zhiyong Yang; Cynthia Berlinicke; Zhiwei Li; Camila Zaverucha-do-Valle; Huamei He; Victoria Petkova; Donald J. Zack; Larry I. Benowitz
The inflammatory response that accompanies central nervous system (CNS) injury can affect neurological outcome in both positive and negative ways. In the optic nerve, a CNS pathway that normally fails to regenerate when damaged, intraocular inflammation causes retinal ganglion cells (RGCs) to switch into an active growth state and extend lengthy axons down the nerve. The molecular basis of this phenomenon is uncertain. A prior study showed that oncomodulin (Ocm), a Ca2+-binding protein secreted by a macrophage cell line, is a potent axon-promoting factor for RGCs. However, it is not known whether Ocm contributes to the physiological effects of intraocular inflammation in vivo, and there are conflicting reports in the literature regarding its expression and significance. We show here that intraocular inflammation causes infiltrative cells of the innate immune system to secrete high levels of Ocm, and that agents that prevent Ocm from binding to its receptor suppress axon regeneration. These results were verified in different strains, species, and experimental models, and establish Ocm as a potent growth-promoting signal between the innate immune system and neurons in vivo.
Progress in Retinal and Eye Research | 2006
Alan R. Harvey; Ying Hu; Simone G. Leaver; Carla B. Mellough; Kevin Park; Joost Verhaagen; Giles W. Plant; Qi Cui
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Neuroreport | 2000
Qi Cui; Alan R. Harvey
Autologous peripheral nerves were transplanted onto transected optic nerves of adult mice. We examined whether intraocular CNTF injections increased retinal ganglion cell (RGC) axon regeneration, and what types of RGCs regrew axons into grafts. After temporal CNTF eye injections there were more fluorogold-labelled regenerating RGCs (mean ± s.e.m. 342 ± 113.1; n = 6) than in sham eye-injected mice (133 ± 27.6; n = 8). Greater numbers of regenerating RGCs (1198 ± 367.6; n = 6) were seen in mice receiving both nasal and temporal CNTF injections. The range of soma areas in regenerate and normal retinas was similar but the average size of regenerating RGCs was greater (212 μm2 vs 111 μm2). Most regenerating RGCs had large dendritic fields. The data suggest a heterogeneous response to axotomy in adult mice, large RGCs preferentially regrowing axons into PN grafts.
Neuroscience | 2009
Qi Cui; Yuqin Yin; Larry I. Benowitz
Following injury to the nervous system, the activation of macrophages, microglia, and T-cells profoundly affects the ability of neurons to survive and to regenerate damaged axons. The primary visual pathway provides a well-defined model system for investigating the interactions between the immune system and the nervous system after neural injury. Following damage to the optic nerve in mice and rats, retinal ganglion cells, the projection neurons of the eye, normally fail to regenerate their axons and soon begin to die. Induction of an inflammatory response in the vitreous strongly enhances the survival of retinal ganglion cells and enables these cells to regenerate lengthy axons beyond the injury site. T cells modulate this response, whereas microglia are thought to contribute to the loss of retinal ganglion cells in this model and in certain ocular diseases. This review discusses the complex and sometimes paradoxical actions of blood-borne macrophages, resident microglia, and T-cells in determining the outcome of injury in the primary visual pathway.
European Journal of Neuroscience | 2006
Simone G. Leaver; Qi Cui; Ora Bernard; Alan R. Harvey
We used a gene therapy approach in transgenic mice to assess the cooperative effects of combining anti‐apoptotic and growth‐promoting stimuli on adult retinal ganglion cell (RGC) survival and axonal regeneration following intraorbital optic nerve injury. Bi‐cistronic adeno‐associated viral vectors encoding a secretable form of ciliary neurotrophic factor and green fluorescent protein (AAV‐CNTF‐GFP) were injected into eyes of mice that had been engineered to over‐express the anti‐apoptotic protein bcl‐2. For comparison this vector was also injected into wildtype (wt) mice, and both mouse strains were injected with control AAV encoding GFP. Five weeks after optic nerve injury we confirmed that bcl‐2 over‐expression by itself promoted the survival of axotomized RGCs, but in contrast to previous reports we also saw regeneration of some mature RGC axons beyond the optic nerve crush. AAV‐mediated expression of CNTF in adult retinas significantly increased the survival and axonal regeneration of RGCs following axotomy in wt and bcl‐2 transgenic mice; however, the effects were greatest in the transgenic strain. Compared with AAV‐GFP‐injected bcl‐2 mice, RGC viability was increased by about 50% (mean, 36 738 RGCs per retina), and over 1000 axons per optic nerve regenerated 1–1.5 mm beyond the crush. These findings exemplify the importance of using a multifactorial therapeutic approach that enhances both neuroprotection and regeneration after central nervous system injury.
Neuroreport | 1994
Qi Cui; Alan R. Harvey
The retrograde nucleophilic tracer diamidino yellow (DY) was injected into the left superior colliculi of 2-day-old rats. Two days later, right eyes were injected with either neurotrophin NT-4/5, cycloheximide (CHX), MK-801 and DNQX (glutamate receptor antagonists), or saline. Almost all rats were perfused 6-7 h later and the numbers of normal and pyknotic DY-labelled retinal ganglion cells (RGCs) were determined from retinal whole mounts. In controls (no eye injection) the proportion of pyknotic RGCs was 1.04%. This level of naturally occurring death was significantly reduced after injection of NT-4/5 (0.34%); normal RGC density was also higher in this group. RGC pyknosis was increased after saline (1.21%), MK-801/DNQX (1.22%) or CHX (1.48%) injections but only in the latter case was the increase significantly greater than control.