Qi Qun Tang
Fudan University Shanghai Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qi Qun Tang.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Shu Wen Qian; Yan Tang; Xi Li; Yuan Liu; You You Zhang; Hai Yan Huang; Rui Dan Xue; Hao-Yong Yu; Liang Guo; Hui Di Gao; Yan Liu; Xia Sun; Yi Ming Li; Wei Ping Jia; Qi Qun Tang
Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces “white adipocytes” with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4’s role in altering insulin sensitivity by affecting WAT development.
Journal of Biological Chemistry | 2015
Liang Guo; Xi Li; Qi Qun Tang
A detailed understanding of the processes controlling adipogenesis is instrumental in the fight against the obesity epidemic. Adipogenesis is controlled by a transcriptional cascade composed of a large number of transcriptional factors, among which CCAAT/enhancer-binding protein (C/EBP) β plays an essential role. During 3T3-L1 adipocyte differentiation, C/EBPβ is induced early to transactivate the expression of C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ), two master transcription factors for terminal adipocyte differentiation. Studies in recent years have revealed many new target genes of C/EBPβ, implicating its participation in many other processes during adipogenesis, such as mitotic clonal expansion, epigenetic regulation, unfolded protein response, and autophagy. Moreover, the function of C/EBPβ is highly regulated by post-translational modifications, which are crucial for the proper activation of the adipogenic program. Advances toward elucidation of the function and roles of the post-translational modification of C/EBPβ during adipogenesis will greatly improve our understanding of the molecular mechanisms governing adipogenesis.
BMC Developmental Biology | 2010
Shu Wen Qian; Xi Li; You You Zhang; Hai Yan Huang; Yuan Liu; Xia Sun; Qi Qun Tang
BackgroundAdipocyte hyperplasia is associated with obesity and arises due to adipogenic differentiation of resident multipotent stem cells in the vascular stroma of adipose tissue and remote stem cells of other organs. The mechanistic characterization of adipocyte differentiation has been researched in murine pre-adipocyte models (i.e. 3T3-L1 and 3T3-F442A), revealing that growth-arrest pre-adipocytes undergo mitotic clonal expansion and that regulation of the differentiation process relies on the sequential expression of three key transcription factors (C/EBPβ, C/EBPα and PPARγ). However, the mechanisms underlying adipocyte differentiation from multipotent stem cells, particularly human mesenchymal stem cells (hBMSCs), remain poorly understood. This study investigated cell cycle regulation and the roles of C/EBPβ, C/EBPα and PPARγ during adipocyte differentiation from hBMSCs.ResultsUtilising a BrdU incorporation assay and manual cell counting it was demonstrated that induction of adipocyte differentiation in culture resulted in 3T3-L1 pre-adipocytes but not hBMSCs undergoing mitotic clonal expansion. Knock-down and over-expression assays revealed that C/EBPβ, C/EBPα and PPARγ were required for adipocyte differentiation from hBMSCs. C/EBPβ and C/EBPα individually induced adipocyte differentiation in the presence of inducers; PPARγ alone initiated adipocyte differentiation but the cells failed to differentiate fully. Therefore, the roles of these transcription factors during human adipocyte differentiation are different from their respective roles in mouse.ConclusionsThe characteristics of hBMSCs during adipogenic differentiation are different from those of murine cells. These findings could be important in elucidating the mechanisms underlying human obesity further.
Journal of Biological Chemistry | 2009
Xi Li; Henrik Molina; Haiyan Huang; You You Zhang; Mei Liu; Shu Wen Qian; Chad Slawson; Wagner B. Dias; Akhilesh Pandey; Gerald W. Hart; M. Daniel Lane; Qi Qun Tang
CCAAT enhancer-binding protein (C/EBP)β is a basic leucine zipper transcription factor family member, and can be phosphorylated, acetylated, and sumoylated. C/EBPβ undergoes sequential phosphorylation during 3T3-L1 adipocyte differentiation. Phosphorylation on Thr188 by MAPK or cyclin A/cdk2 primes the phosphorylations on Ser184/Thr179 by GSK3β, and these phosphorylations are required for the acquisition of DNA binding activity of C/EBPβ. Here we show that C/EBPβ is modified by O-GlcNAc, a dynamic single sugar modification found on nucleocytoplasmic proteins. The GlcNAcylation sites are Ser180 and Ser181, which are in the regulation domain and are very close to the phosphorylation sites (Thr188, Ser184, and Thr179) required for the gain of DNA binding activity. Both in vitro and ex vivo experiments demonstrate that GlcNAcylation on Ser180 and Ser181 prevents phosphorylation on Thr188, Ser184, and Thr179, as indicated by the decreased relative phosphorylation and DNA binding activity of C/EBPβ delayed the adipocyte differentiation program. Mutation of both Ser180 and Ser181 to Ala significantly increase the transcriptional activity of C/EBPβ. These data suggest that GlcNAcylation regulates both the phosphorylation and DNA binding activity of C/EBPβ.
Molecular & Cellular Proteomics | 2011
Hai Yan Huang; Ling Ling Hu; Tan Jing Song; Xi Li; Qun He; Xia Sun; Yi Ming Li; Hao Jie Lu; Pengyuan Yang; Qi Qun Tang
The developmental pathway that gives rise to mature adipocytes involves two distinct stages: commitment and terminal differentiation. Although the important proteins/factors contributing to terminal adipocyte differentiation have been well defined, the proteins/factors in the commitment of mesenchymal stem cells to the adipocyte lineage cells have not. In this study, we applied proteomics analysis profiling to characterize differences between uncommitted C3H10T1/2 pluripotent stem cells and those that have been committed to the adipocyte lineage by BMP4 or BMP2 with the goal to identify such proteins/factors and to understand the molecular mechanisms that govern the earliest stages of adipocyte lineage commitment. Eight proteins were found to be up-regulated by BMP2, and 27 proteins were up-regulated by BMP4, whereas five unique proteins were up-regulated at least 10-fold by both BMP2/4, including three cytoskeleton-associated proteins (i.e. lysyl oxidase (LOX), translationally controlled tumor protein 1 (TPT1), and αB-crystallin). Western blotting further confirmed the induction of the expression of these cytoskeleton-associated proteins in the committed C3H10T1/2 induced by BMP2/4. Importantly, knockdown of LOX expression totally prevented the commitment, whereas knockdown of TPT1 and αB-crystallin expression partially inhibited the commitment. Several published reports suggest that cell shape can influence the differentiation of partially committed precursors of adipocytes, osteoblasts, and chondrocytes. We observed a dramatic change of cell shape during the commitment process, and we showed that knockdown of these cytoskeleton-associated proteins prevented the cell shape change and restored F-actin organization into stress fibers and inhibited the commitment to the adipocyte lineage. Our studies indicate that these differentially expressed cytoskeleton-associate proteins might determine the fate of mesenchymal stem cells to commit to the adipocyte lineage through cell shape regulation.
Molecular and Cellular Biology | 2013
Liang Guo; Jia Xin Huang; Yuan Liu; Xi Li; Shui Rong Zhou; Shu Wen Qian; Yang Liu; Hao Zhu; Hai Yan Huang; Yongjun Dang; Qi Qun Tang
ABSTRACT Autophagy is a highly conserved self-digestion pathway involved in various physiological and pathophysiological processes. Recent studies have implicated a pivotal role of autophagy in adipocyte differentiation, but the molecular mechanism for its role and how it is regulated during this process are not clear. Here, we show that CCAAT /enhancer-binding protein β (C/EBPβ), an important adipogenic factor, is required for the activation of autophagy during 3T3-L1 adipocyte differentiation. An autophagy-related gene, Atg4b, is identified as a de novo target gene of C/EBPβ and is shown to play an important role in 3T3-L1 adipocyte differentiation. Furthermore, autophagy is required for the degradation of Klf2 and Klf3, two negative regulators of adipocyte differentiation, which is mediated by the adaptor protein p62/SQSTM1. Importantly, the regulation of autophagy by C/EBPβ and the role of autophagy in Klf2/3 degradation and in adipogenesis are further confirmed in mouse models. Our data describe a novel function of C/EBPβ in regulating autophagy and reveal the mechanism of autophagy during adipocyte differentiation. These new insights into the molecular mechanism of adipose tissue development provide a functional pathway with therapeutic potential against obesity and its related metabolic disorders.
Molecular Endocrinology | 2012
You You Zhang; Xi Li; Shu Wen Qian; Liang Guo; Hai Yan Huang; Qun He; Yuan Liu; Chun Gu Ma; Qi Qun Tang
Runx2, a runt-related transcriptional factor family member, is involved in the regulation of osteoblast differentiation. Interestingly, it is abundant in growth-arrested 3T3-L1 preadipocytes and was dramatically down-regulated during adipocyte differentiation. Knockdown of Runx2 expression promoted 3T3-L1 adipocyte differentiation, whereas overexpression inhibited adipocyte differentiation and promoted the trans-differentiation of 3T3-L1 preadipocytes to bone cells. Runx2 was down-regulated specifically by dexamethasone (DEX). Only type I Runx2 was expressed in 3T3-L1 preadipocytes. Using luciferase assay and chromatin immunoprecipitation-quantitative PCR analysis, it was found that DEX repressed this type of Runx2 at the transcriptional level through direct binding of the glucocorticoid receptor (GR) to a GR-binding element in the Runx2 P2 promoter. Further studies indicated that GR recruited histone deacetylase 1 to the Runx2 P2 promoter which then mediated the deacetylation of histone H4 and down-regulated Runx2 expression. Runx2 might play its repressive role through the induction of p27 expression, which blocked 3T3-L1 adipocyte differentiation by inhibiting mitotic clonal expansion. Taken together, we identified Runx2 as a new downstream target of DEX and explored a new pathway between DEX, Runx2, and p27 which contributed to the mechanism of the 3T3-L1 adipocyte differentiation.
Journal of Hepatology | 2015
Zhi Chun Zhang; Yan Liu; Liu Ling Xiao; Shu Fen Li; Jing Hui Jiang; Yue Zhao; Shu Wen Qian; Qi Qun Tang; Xi Li
BACKGROUND & AIMS Due to the protective effect of estrogen against hepatic fat accumulation, the prevalence of non-alcoholic fatty liver disease (NAFLD) in premenopausal women is lower than that in men at the same age and in postmenopausal women. Our study was to further elucidate an underlying mechanism by which estrogen prevents NAFLD from miRNA perspective in female mice. METHODS miRNA expression was evaluated by TaqMan miRNA assay. Luciferase and ChIP assay were done to validate regulation of miR-125b by estrogen via estrogen receptor alpha (ERα). Nile red and Oil red O staining were used to check lipid content. Overexpressing or inhibiting the physiological role of miR-125b in the liver of mice through injecting adenovirus were used to identify the function of miR-125b in vivo. RESULTS miR-125b expression was activated by estrogen via ERα in vitro and in vivo. miR-125b inhibited lipid accumulation both in HepG2 cells and primary mouse hepatocytes. Consistently, ovariectomized or liver-specific ERα knockdown mice treated with miR-125b overexpressing adenoviruses were resistant to hepatic steatosis induced by high-fat diet, due to decreased fatty acid uptake and synthesis and decreased triglyceride synthesis. Conversely, inhibiting the physiological role of miR-125b with a sponge decoy slightly promoted liver steatosis with a high-fat diet. Notably, we provided evidence showing that fatty acid synthase was a functional target of miR-125b. CONCLUSION Our findings identify a novel mechanism by which estrogen protects against hepatic steatosis in female mice via upregulating miR-125b expression.
International Journal of Obesity | 2016
L Xiao; X Yang; Y Lin; S Li; J Jiang; Shu Wen Qian; Qi Qun Tang; R He; Xi Li
Background/Objectives:Although obesity is associated with low-grade inflammation and metabolic disorders, clinical studies suggested some obese people were metabolically healthy with smaller adipocyte size compared with metabolically abnormal obese (MAO). This indicated adipocyte size may be an important predictor underlay the distinction between MAO and metabolically healthy obese. As recent study has shown that adipocytes expressed class II major histocompatibility complex (MHCII), which functioned as APCs during obesity. However, the relationship between adipocyte hypertrophy and MHCII expression was not involved. Here we hypothesize that hypertrophic adipocytes could be associated with upregulating MHCII to influence adipose tissue metabolism.Methods:Adipocytes were sorted by fluorescence-activated cell sorting (FACS) according to the cell size from MAO mice. The activation of MHCII, T cells and related signaling molecules were examined by FACS, ELISA and western blotting. 3T3-L1 cell line and primary adipocytes were used to examine the effect of free fatty acids (FFA) on adipocytes enlargement and MHCII expression.Results:MAO mice had a significant increase in adipocytes size and FFA concentration. The large adipocytes from both obese and non-obese mice expressed higher levels of MHCII than small adipocytes. Importantly, large adipocytes from obese mice stimulated CD4+ T cells to secrete more interferon (IFN)-γ. Furthermore, the activation of the JNK-STAT1 pathway was involved in upregulation of MHCII in large adipocytes. In vitro FFA treatment promoted adipocyte hypertrophy and expression of MHCII-associated genes.Conclusions:This study demonstrates that large adipocytes highly express MHCII and function as APC to stimulate IFN-γ-expressing CD4+ T cells, in which FFA may have important roles before IFN-γ elevated. These findings suggest that adipocyte hypertrophy, rather than overall obesity, is the major contributor to adipose tissue inflammation and insulin resistance.
Molecular Biology of the Cell | 2011
You You Zhang; Xi Li; Shu Wen Qian; Liang Guo; Hai Yan Huang; Qun He; Yuan Liu; Chun Gu Ma; Qi Qun Tang
Histone H4 is activated by C/EBPβ in mitotic clonal expansion during adipogenesis. C/EBP-binding sites are identified in histone H4 promoters, and H4 expression is suppressed when C/EBPβ is knocked down or its DNA-binding activity is inhibited by A-C/EBP. These results help in our understanding of how C/EBPβ plays important roles in the proliferation of other cells.