Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qi Wu is active.

Publication


Featured researches published by Qi Wu.


Journal of Chromatography A | 2012

Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion

Bo Jiang; Kaiguang Yang; Qun Zhao; Qi Wu; Zhen Liang; Lihua Zhang; Xiaojun Peng; Yukui Zhang

In this paper, magnetic Fe₃O₄ nanoparticles modified graphene oxide nanocomposites (GO-CO-NH-Fe₃O₄) were prepared by covalent bonding, via the reaction between the amino groups of fuctionalized Fe₃O₄ and the carboxylic groups of GO, confirmed by Fourier-transform infrared spectra, Raman spectroscopy, and transmission electron microscopy. With GO-CO-NH-Fe₃O₄ as a novel substrate, trypsin was immobilized via π-π stacking and hydrogen bonding interaction, and the binding capacity of trypsin reached as high as 0.275 mg/mg. Since GO-CO-NH-Fe₃O₄ worked as not only support for enzyme immobilization, but also as an excellent microwave irradiation absorber, the digestion efficiency could be further improved with microwave assistance. By such an immobilized enzymatic reactor (IMER), standard proteins could be efficiently digested within 15 s, with sequence coverages comparable or better than those obtained by conventional in-solution digestion (12 h). Since trypsin was immobilized under mild conditions, the enzymatic activity of IMER preserved at least for a month. In addition, due to the good hydrophilicity of GO, no peptide residue was observed in the sequent digestion of bovine serum albumin and myoglobin. To further confirm the efficiency of such an IMER for proteome analysis, it was applied to digest proteins extracted from rat liver, followed by nanoRPLC-ESI-MS/MS analysis. With only 5 min microwave-assisted digestion, in 3 parallel runs, totally 456 protein groups were identified, comparable to that obtained by 12 h in-solution digestion, indicating the great potential of IMERs with GO-CO-NH-Fe₃O₄ as the support for high throughput proteome study.


Analytical Chemistry | 2011

Integrated Sample Pretreatment System for N-Linked Glycosylation Site Profiling with Combination of Hydrophilic Interaction Chromatography and PNGase F Immobilized Enzymatic Reactor via a Strong Cation Exchange Precolumn

Yanyan Qu; Simin Xia; Huiming Yuan; Qi Wu; Man Li; Lijuan Zou; Lihua Zhang; Zhen Liang; Yukui Zhang

An integrated sample pretreatment system, composed of a click maltose hydrophilic interaction chromatography (HILIC) column, a strong cation exchange (SCX) precolumn, and a PNGase F immobilized enzymatic reactor (IMER), was established for the simultaneous glycopeptide enrichment, sample buffer exchange, and online deglycosylation, by which the sample pretreatment for glycoproteome could be performed online automatically, beneficial to improve the efficiency and sensitivity of the N-linked glycosylation site identification. With such a system, the deglycosylated glycopeptide from the digests of avidin with the coexistence of 50 times (mass ratio) BSA could be selectively detected, and the detection limit as low as 5 fmol was achieved. Moreover, the sample pretreatment time was significantly shortened to ~1 h. Such a system was further successfully applied for analyzing the digest of the soluble fraction extracted from rat brain. A total of 120 unique glycoprotein groups and 196 N-linked glycosylation sites were identified by nanoreversed phase liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoRPLC-ESI-MS/MS), with the injected digests amount as 6 μg. All these results demonstrate that the integrated system is of great promise for N-linked glycosylation site profiling and could be further online coupled with nanoHPLC-ESI-MS/MS to achieve high-throughput glycoproteome analysis.


Chemistry: A European Journal | 2014

Boronate Affinity Monolith with a Gold Nanoparticle-Modified Hydrophilic Polymer as a Matrix for the Highly Specific Capture of Glycoproteins

Ci Wu; Yu Liang; Qun Zhao; Yanyan Qu; Shen Zhang; Qi Wu; Zhen Liang; Lihua Zhang; Yukui Zhang

As low abundance is the great obstacle for glycoprotein analysis, the development of materials with high efficiency and selectivity for glycoprotein enrichment is a prerequisite in glycoproteome research. Herein, we report a new kind of hydrophilic boronate affinity monolith by attaching 4-mercaptophenylboronic acid (MPBA) with 2-mercaptoethylamine (MPA) on the gold nanoparticle-modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate)) monolith for glycoprotein enrichment. With poly(ethylene glycol) diacrylate as the cross-linker and the further modification of gold nanoparticles, the matrix has advantages of good hydrophilicity and enhanced surface area, which are beneficial to improve the enrichment selectivity and efficiency for glycoproteins. The attachment of MPBA and MPA provide intramolecular BN coordination, which could further enhance the specificity of glycoprotein capture. Such a boronate affinity monolith was applied to enrich horseradish peroxidase (HRP) from the mixture of HRP and bovine serum albumin (BSA), and high selectivity was obtained even at a mass ratio of 1:1000. In addition, the binding capacity of ovalbumin on such monolith reached 390 μg g(-1) . Furthermore, the average recovery of HRP on the prepared affinity monoliths was (84.8±1.9) %, obtained in three times enrichment with the same column. Finally, the boronate affinity monolith was successfully applied for the human-plasma glycoproteome analysis. As a result, 160 glycoproteins were credibly identified from 9 μg of human plasma, demonstrating the great potential of such a monolith for large-scale glycoproteome research.


Analytical Chemistry | 2013

Mass Defect-Based Pseudo-Isobaric Dimethyl Labeling for Proteome Quantification

Yuan Zhou; Yichu Shan; Qi Wu; Shen Zhang; Lihua Zhang; Yukui Zhang

Discovering differentially expressed proteins in various biological samples requires proteome quantification methods with accuracy, precision, and wide dynamic range. This study describes a mass defect-based pseudo-isobaric dimethyl labeling (pIDL) method based on the subtle mass defect differences between (12)C/(13)C and (1)H/(2)H. Lys-C protein digests were labeled with CD2O/(13)CD2O and reduced with NaCNBD3/NaCNBH3 as heavy and light isotopologues, respectively. The fragment ion pairs with mass differences of 5.84 mDa were resolved by high-resolution tandem mass spectrometry (MS/MS) and used for quantification. The pIDL method described here resulted in highly accurate and precise quantification results with approximately 100-fold dynamic range. Furthermore, the pIDL method was extended to 4-plex proteome quantification and applied to the quantitative analysis of proteomes from Hca-P and Hca-F, two mouse hepatocarcinoma ascites syngeneic cell lines with low and high lymph node metastasis rates.


Analytica Chimica Acta | 2012

Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria

Liyuan Zhang; Zhen Liang; Kaiguang Yang; Simin Xia; Qi Wu; Lihua Zhang; Yukui Zhang

The enrichment of low abundance phosphopeptides before MS analysis is a critical step for in-depth phosphoproteome research. In this study, mesoporous titanium dioxide (TiO(2)) aerogel was prepared by precipitation and supercritical drying. The specific surface area up to 490.7 m(2) g(-1) is achieved by TiO(2) aerogel, much higher than those obtained by commercial TiO(2) nanoparticles and by the latest reported mesoporous TiO(2) spheres. Due to the large specific surface area and the mesoporous structure of the aerogel, the binding capacity for phosphopeptides is six times higher than that of conventional TiO(2) microparticles (173 vs 28 μmol g(-1)). Because of the good compatibility of enrichment procedure with MALDI-TOF-MS and the large binding capacity of TiO(2) aerogel, a detection limit as low as 30 amol for analyzing phosphopeptides in β-casein digest was achieved. TiO(2) aerogel was further applied to enrich phosphopeptides from rat liver mitochondria, and 266 unique phosphopeptides with 340 phosphorylation sites, corresponding to 216 phosphoprotein groups, were identified by triplicate nanoRPLC-ESI-MS/MS runs, with false-positive rate less than 1% at the peptide level. These results demonstrate that TiO(2) aerogel is a kind of promising material for sample pretreatment in the large-scale phosphoproteome study.


Journal of Chromatography A | 2012

A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue.

Hao Jiang; Huiming Yuan; Yu Liang; Simin Xia; Qun Zhao; Qi Wu; Lihua Zhang; Zhen Liang; Yukui Zhang

In this work, a novel kind of N-vinyl-2-pyrrolidinone (NVP) modified poly acrylic ester microspheres was prepared, followed by trypsin immobilization to prepare a hydrophilic immobilized enzyme reactor (IMER), to achieve highly efficient protein digestion with low peptide residue. The nonspecific adsorption of peptides on such an IMER was evaluated by the in sequence digestion of bovine serum albumin (BSA) and myoglobin. Without NVP modification, both proteins could be identified after digestion by a 5 cm-length IMER, but 18 peptides of BSA were found in the digests of myoglobin caused by the nonspecific adsorption of the matrix. With NVP modification, the hydrophilicity of IMER was greatly improved, resulting in not only the sequence coverage of myoglobin increased from 63% to 73%, but also no residual peptides from BSA observed in myoglobin digests. Although the sequence coverages of proteins obtained by the IMER were comparable to those obtained by in-solution digestion, the digestion time was shortened from 24h to 1 min. By such an IMER, a protein mixture, containing BSA, myoglobin, and cytochrome c (100, 1 and 0.01 μg/mL, respectively), was digested, and all proteins were unambiguously identified with improved sequence coverages than that achieved by in-solution digestion. Furthermore, the hydrophilic IMER was also off-line coupled to nano-RPLC-ESI-MS/MS for the analysis of proteins extracted from yeast. After 1.5 min digestion, 271 protein groups with at least 2 distinct peptides were identified, much more than those obtained by 24h in-solution digestion (192 protein groups), indicating the great potential of such an IMER for proteome analysis.


Analytical Chemistry | 2014

1-Dodecyl-3-Methylimidazolium Chloride-Assisted Sample Preparation Method for Efficient Integral Membrane Proteome Analysis

Qun Zhao; Fei Fang; Yu Liang; Huiming Yuan; Kaiguang Yang; Qi Wu; Zhen Liang; Lihua Zhang; Yukui Zhang

Due to their extremely hydrophobic nature, the analysis of integral membrane proteins (IMPs) is of great challenge. Although various additives have been applied to improve the solubility of IMPs, they still suffer from low solubilization efficiency, incompatibility with trypsin digestion, or interference with MS detection. Herein, the systematic study on the effect of ionic liquid structure on membrane protein solubilization and trypsin biocompatibility was performed, based on which 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) was selected for the sample preparation of IMPs. Compared with other commonly used additives, such as sodium dodecyl sulfate (SDS), Rapigest, and methanol, C12Im-Cl showed the best performance. In addition, with a strong cation exchange trap column, it could be easily removed after trypsin digestion, which not only was beneficial to avoid protein precipitation during digestion but also had no adverse effect on LC-MS-based separation and detection. Such a C12Im-Cl-assisted sample preparation method was further applied to the membrane proteome analysis of rat brain. Compared with the SDS-assisted method, 1.4 and 3.5 times improvement on the identified IMP and hydrophobic peptide number were achieved (251 vs 178, and 982 vs 279). All these results demonstrated that the C12Im-Cl-assisted sample preparation method is of great promise to promote the large-scale membrane proteome profiling.


ACS Applied Materials & Interfaces | 2016

Boronic Acid-Functionalized Particles with Flexible Three-Dimensional Polymer Branch for Highly Specific Recognition of Glycoproteins

Jianxi Liu; Kaiguang Yang; Wenya Shao; Yanyan Qu; Senwu Li; Qi Wu; Lihua Zhang; Yukui Zhang

A novel organic-inorganic hybrid particle with high hydrophilicity three-dimensional boronic acid functional polymer branches was facilely synthesized through thiol-ene surface-initiated click reaction, by which the target glycoprotein could be captured selectively in the 5000-fold disrupting protein. This highest selectivity ever reported demonstrated that this boronic acid functionalized particle exhibited great potential in the recognition of cis-diol-containing biomolecules, including the glycoproteins.


Analytica Chimica Acta | 2015

Gold nanoparticles immobilized hydrophilic monoliths with variable functional modification for highly selective enrichment and on-line deglycosylation of glycopeptides

Yu Liang; Ci Wu; Qun Zhao; Qi Wu; Bo Jiang; Yejing Weng; Zhen Liang; Lihua Zhang; Yukui Zhang

The poly (glycidyl methacrylate-co-poly (ethylene glycol) diacrylate) monoliths modified with gold nanoparticles, with advantages of enhanced reactive sites, good hydrophilicity and facile modification, were prepared as the matrix, followed by variable functionalization with cysteine and PNGase F for glycopeptide enrichment and on-line deglycosylation respectively. By the cysteine functionalized monolithic column, glycopeptides could be efficiently and selectively enriched with good reproducibility based on hydrophilic interaction chromatography (HILIC). Furthermore, the enrichment was specially achieved in weak alkaline environment, with 10 mM NH4HCO3 as the elution buffer, compatible with deglycosylation conditions. Therefore, the glycopeptides could be on-line deglycosylated with high efficiency and throughput by directly coupling the PNGase F functionalized monolithic column with the enrichment column during elution without the requirement of buffer exchange and pH adjustment. By such a method, within only 70-min pretreatment, 196 N-linked glycopeptides, corresponding to 122 glycoproteins, could be identified from 5 μg of human plasma with 14 high-abundant proteins removed, and the N-linked glycopeptides occupied 81% of all identified peptides, achieving to the best of our knowledge, the highest selectivity of HILIC-based methods. All the results demonstrated the high efficiency, selectivity and throughput of our proposed strategy for the large scale glycoproteome analysis.


Analytica Chimica Acta | 2014

An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling

Yejing Weng; Yanyan Qu; Hao Jiang; Qi Wu; Lihua Zhang; Huiming Yuan; Yuan Zhou; Xiaodan Zhang; Yukui Zhang

Relative quantification of N-glycoproteomes shows great promise for the discovery of candidate biomarkers and therapeutic targets. The traditional protocol for quantitative analysis of glycoproteomes is usually off-line performed, and suffers from long sample preparation time, and the risk of sample loss or contamination due to manual manipulation. In this study, a novel integrated sample preparation platform for quantitative N-glycoproteome analysis was established, with combination of online N-glycopeptide capture by a HILIC column, sample buffer exchange by a N2-assisted HILIC-RPLC interface, deglycosylation by a hydrophilic PNGase F immobilized enzymatic reactor (hIMER) and solid dimethyl labeling on a C18 precolumn. To evaluate the performance of such a platform, two equal aliquots of immunoglobulin G (IgG) digests were sequentially pretreated, followed by MALDI-TOF MS analysis. The signal intensity ratio of heavy/light (H/L) labeled deglycosylated peptides with the equal aliquots was 1.00 (RSD=6.2%, n=3), much better than those obtained by the offline protocol, with H/L ratio as 0.76 (RSD=11.6%, n=3). Additionally, the total on-line sample preparation time was greatly shortened to 160 min, much faster than that of offline approach (24h). Furthermore, such an integrated pretreatment platform was successfully applied to analyze the two kinds of hepatocarcinoma ascites syngeneic cell lines with high (Hca-F) and low (Hca-P) lymph node metastasis rates. For H/L labeled Hca-P lysates with the equal aliquots, 99.6% of log2 ratios (H/L) of quantified glycopeptides ranged from -1 to 1, demonstrating high accuracy of the developed sample preparation strategy. By triplicated analysis of glycopeptides and non-glycopeptides of Hca-F and Hca-P lysates, 43 up-regulated and 30 down-regulated (Hca-F/P) N-glycosylation sites, and 11 significantly changed N-glycoproteins were successfully quantified, and most of them were related to tumorigenesis and tumor metastasis. All these results demonstrate the developed integrated N-glycoprotein pretreatment platform is of great power for the accurate, precise and high-throughput analysis of N-glycoproteomes.

Collaboration


Dive into the Qi Wu's collaboration.

Top Co-Authors

Avatar

Lihua Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Yukui Zhang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Zhen Liang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Kaiguang Yang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Qun Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huiming Yuan

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Yanyan Qu

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Yu Liang

Dalian Institute of Chemical Physics

View shared research outputs
Top Co-Authors

Avatar

Shen Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yichu Shan

Dalian Institute of Chemical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge