Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qi Zhuang Ye is active.

Publication


Featured researches published by Qi Zhuang Ye.


Biochemical and Biophysical Research Communications | 2003

Specificity for inhibitors of metal-substituted methionine aminopeptidase

Jing Ya Li; Ling-Ling Chen; Yong Mei Cui; Qun-Li Luo; Jia Li; Fa Jun Nan; Qi Zhuang Ye

Methionine aminopeptidases (MetAPs) have been studied in vitro as Co(II) enzymes, but their in vivo metal remains to be defined. While activation of Escherichia coli MetAP (EcMetAP1) by Co(II), Mn(II), and Zn(II) was detectable by a colorimetric Met-S-Gly-Phe assay, significant activation by Ni(II) was shown in a fluorescence Met-AMC assay, in addition to Co(II) and Mn(II) activation. When tested on the metal-substituted EcMetAP1s, a few inhibitors that we obtained recently from a random screening on Co-EcMetAP1 either became much weak or lost activity on Mn- or Zn-EcMetAP1, although they kept inhibitory activity on Ni-EcMetAP1. A couple of peptidic inhibitors and the methionine mimetic (3R)-amino-(2S)-hydroxyheptanoic acid (AHHpA, 6) maintained moderate activities on Co-, Mn-, Zn-, and Ni-EcMetAP1s. Our results clearly demonstrate that the metal-substitution has changed the enzyme specificity for substrates and inhibitors. Therapeutic applications call for inhibitors specific for MetAP with a physiologically relevant metal at its active site.


Journal of Medicinal Chemistry | 2008

Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity

Wen Long Wang; Sergio C. Chai; Min Huang; Hong Zhen He; Thomas D. Hurley; Qi Zhuang Ye

Methionine aminopeptidase (MetAP) is a promising target to develop novel antibiotics, because all bacteria express MetAP from a single gene that carries out the essential function of removing N-terminal methionine from nascent proteins. Divalent metal ions play a critical role in the catalysis, and there is an urgent need to define the actual metal used by MetAP in bacterial cells. By high throughput screening, we identified a novel class of catechol-containing MetAP inhibitors that display selectivity for the Fe(II)-form of MetAP. X-ray structure revealed that the inhibitor binds to MetAP at the active site with the catechol coordinating to the metal ions. Importantly, some of the inhibitors showed antibacterial activity at low micromolar concentration on Gram-positive and Gram-negative bacteria. Our data indicate that Fe(II) is the likely metal used by MetAP in the cellular environment, and MetAP inhibitors need to inhibit this metalloform of MetAP effectively to be therapeutically useful.


Journal of Biological Chemistry | 2008

FE(II) Is the Native Cofactor for Escherichia coli Methionine Aminopeptidase

Sergio C. Chai; Wen Long Wang; Qi Zhuang Ye

Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.


Journal of Organic Chemistry | 2009

Discovery and development of the covalent hydrates of trifluoromethylated pyrazoles as riboflavin synthase inhibitors with antibiotic activity against Mycobacterium tuberculosis

Yujie Zhao; Adelbert Bacher; Boris Illarionov; Markus Fischer; Gunda I. Georg; Qi Zhuang Ye; Phillip E. Fanwick; Scott G. Franzblau; Baojie Wan; Mark Cushman

A high-throughput screening (HTS) hit compound displayed moderate inhibition of Mycobacterium tuberculosis and Escherichia coli riboflavin synthases. The structure of the hit compound provided by the commercial vendor was reassigned as [3-(4-chlorophenyl)-5-hydroxy-5-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl](o-tolyl)methanone (18). The hit compound had a k(is) of 8.7 microM vs. M. tuberculosis riboflavin synthase and moderate antibiotic activity against both M. tuberculosis replicating phenotype and nonreplicating persistent phenotype. Molecular modeling studies suggest that two inhibitor molecules bind in the active site of the enzyme, and that the binding is stabilized by stacking between the benzene rings of two adjacent ligands. The most potent antibiotic in the series proved to be [5-(4-chlorophenyl)-5-hydroxy-3-(trifluoromethyl)-4,5-dihydro-1H-pyrazol-1-yl](m-tolyl)methanone (16), which displayed a minimum inhibitory concentration (MIC) of 36.6 microM vs. M. tuberculosis replicating phenotype and 48.9 microM vs. M. tuberculosis nonreplicating phenotype. The HTS hit compound and its analogues provide the first examples of riboflavin synthase inhibitors with antibiotic activity.


Journal of Medicinal Chemistry | 2010

Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase.

Jing Ping Lu; Sergio C. Chai; Qi Zhuang Ye

Methionine aminopeptidase (MetAP) carries out an important cotranslational N-terminal methionine excision of nascent proteins and represents a potential target to develop antibacterial and antitubercular drugs. We cloned one of the two MetAPs in Mycobacterium tuberculosis (MtMetAP1c from the mapB gene) and purified it to homogeneity as an apoenzyme. Its activity required a divalent metal ion, and Co(II), Ni(II), Mn(II), and Fe(II) were among activators of the enzyme. Co(II) and Fe(II) had the tightest binding, while Ni(II) was the most efficient cofactor for the catalysis. MtMetAP1c was also functional in E. coli cells because a plasmid-expressed MtMetAP1c complemented the essential function of MetAP in E. coli and supported the cell growth. A set of potent MtMetAP1c inhibitors were identified, and they showed high selectivity toward the Fe(II)-form, the Mn(II)-form, or the Co(II) and Ni(II) forms of the enzyme, respectively. These metalloform selective inhibitors were used to assign the metalloform of the cellular MtMetAP1c. The fact that only the Fe(II)-form selective inhibitors inhibited the cellular MtMetAP1c activity and inhibited the MtMetAP1c-complemented cell growth suggests that Fe(II) is the native metal used by MtMetAP1c in an E. coli cellular environment. Finally, X-ray structures of MtMetAP1c in complex with three metalloform-selective inhibitors were analyzed, which showed different binding modes and different interactions with metal ions and active site residues.


ChemMedChem | 2011

Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidases by Bengamide Derivatives.

Jing Ping Lu; Xiu Hua Yuan; Hai Yuan; Wen Long Wang; Baojie Wan; Scott G. Franzblau; Qi Zhuang Ye

Methionine aminopeptidase (MetAP) carries out an essential function of protein N‐terminal processing in many bacteria and is a promising target for the development of novel antitubercular agents. Natural bengamides potently inhibit the proliferation of mammalian cells by targeting MetAP enzymes, and the X‐ray crystal structure of human type 2 MetAP in complex with a bengamide derivative reveals the key interactions at the active site. By preserving the interactions with the conserved residues inside the binding pocket while exploring the differences between bacterial and human MetAPs around the binding pocket, seven bengamide derivatives were synthesized and evaluated for inhibition of MtMetAP1a and MtMetAP1c in different metalloforms, inhibition of M. tuberculosis growth in replicating and non‐replicating states, and inhibition of human K562 cell growth. Potent inhibition of MtMetAP1a and MtMetAP1c and modest growth inhibition of M. tuberculosis were observed for some of these derivatives. Crystal structures of MtMetAP1c in complex with two of the derivatives provided valuable structural information for improvement of these inhibitors for potency and selectivity.


Journal of Pharmacology and Experimental Therapeutics | 2006

N1-(3-Cyclohexylbutanoyl)-N2-[3-(1H-imidazol-4-yl)propyl]guanidine (UR-AK57), a Potent Partial Agonist for the Human Histamine H1- and H2-Receptors

Sheng Xue Xie; Anja Kraus; Prasanta Ghorai; Qi Zhuang Ye; Sigurd Elz; Armin Buschauer; Roland Seifert

Both the histamine H1-receptor (H1R) and H2-receptor (H2R) exhibit pronounced species selectivity in their pharmacological properties; i.e., bulky agonists possess higher potencies and efficacies at guinea pig (gp) than at the corresponding human (h) receptor isoforms. In this study, we examined the effects of NG-acylated imidazolylpropylguanidines substituted with a single phenyl or cyclohexyl substituent on H1R and H2R species isoforms expressed in Sf9 insect cells. N1-(3-Cyclohexylbutanoyl)-N2-[3-(1H-imidazol-4-yl)propyl]guanidine (UR-AK57) turned out to be the most potent hH2R agonist identified so far (EC50 of 23 nM in the GTPase assay at the hH2R-Gsα fusion protein expressed in Sf9 insect cells). UR-AK57 was almost a full-hH2R agonist and only slightly less potent and efficacious than at gpH2R-Gsα. Several NG-acylated imidazolylpropylguanidines showed similar potency at hH2R and gpH2R. Most unexpectedly, UR-AK57 exhibited moderately strong partial hH1R agonism with a potency similar to that of histamine, whereas at gpH1R, UR-AK57 was only a very weak partial agonist. Structure/activity relationship studies revealed that both the alkanoyl chain connecting the aromatic or alicyclic substituent with the guanidine moiety and the nature of the carbocycle (cyclohexyl versus phenyl ring) critically determine the pharmacological properties of this class of compounds. Collectively, our data show that gpH1R and gpH R do not necessarily exhibit preference for bulky agonists 2compared with hH1R and hH2R, respectively, and that UR-AK57 is a promising starting point for the development of both potent and efficacious hH1R and hH2R agonists.


Journal of Organic Chemistry | 2009

Discovery and Development of a Small Molecule Library with Lumazine Synthase Inhibitory Activity

Arindam Talukdar; Meghan Breen; Adelbert Bacher; Boris Illarionov; Markus Fischer; Gunda I. Georg; Qi Zhuang Ye; Mark Cushman

(E)-5-Nitro-6-(2-hydroxystyryl)pyrimidine-2,4(1H,3H)-dione (9) was identified as a novel inhibitor of Schizosaccharomyces pombe lumazine synthase by high-throughput screening of a 100000 compound library. The K(i) of 9 vs Mycobacterium tuberculosis lumazine synthase was 95 microM. Compound 9 is a structural analogue of the lumazine synthase substrate 5-amino-6-(d-ribitylamino)-2,4-(1H,3H)pyrimidinedione (1). This indicates that the ribitylamino side chain of the substrate is not essential for binding to the enzyme. Optimization of the enzyme inhibitory activity through systematic structure modification of the lead compound 9 led to (E)-5-nitro-6-(4-nitrostyryl)pyrimidine-2,4(1H,3H)-dione (26), which has a K(i) of 3.7 microM vs M. tuberculosis lumazine synthase.


BMC Structural Biology | 2007

Structural analysis of inhibition of E. coli methionine aminopeptidase: implication of loop adaptability in selective inhibition of bacterial enzymes

Ze Qiang Ma; Sheng Xue Xie; Qingqing Huang; Fa Jun Nan; Thomas D. Hurley; Qi Zhuang Ye

BackgroundMethionine aminopeptidase is a potential target of future antibacterial and anticancer drugs. Structural analysis of complexes of the enzyme with its inhibitors provides valuable information for structure-based drug design efforts.ResultsFive new X-ray structures of such enzyme-inhibitor complexes were obtained. Analysis of these and other three similar structures reveals the adaptability of a surface-exposed loop bearing Y62, H63, G64 and Y65 (the YHGY loop) that is an integral part of the substrate and inhibitor binding pocket. This adaptability is important for accommodating inhibitors with variations in size. When compared with the human isozymes, this loop either becomes buried in the human type I enzyme due to an N-terminal extension that covers its position or is replaced by a unique insert in the human type II enzyme.ConclusionThe adaptability of the YHGY loop in E. coli methionine aminopeptidase, and likely in other bacterial methionine aminopeptidases, enables the enzyme active pocket to accommodate inhibitors of differing size. The differences in this adaptable loop between the bacterial and human methionine aminopeptidases is a structural feature that can be exploited to design inhibitors of bacterial methionine aminopeptidases as therapeutic agents with minimal inhibition of the corresponding human enzymes.


Journal of Biomolecular Screening | 2006

Support vector machines in HTS data mining: Type I MetAPs inhibition study.

Jianwen Fang; Yinghua Dong; Gerald H. Lushington; Qi Zhuang Ye; Gunda I. Georg

This article reports a successful application of support vector machines (SVMs) in mining high-throughput screening (HTS) data of a type I methionine aminopeptidases (MetAPs) inhibition study. A library with 43,736 small organic molecules was used in the study, and 1355 compounds in the library with 40% or higher inhibition activity were considered as active. The data set was randomly split into a training set and a test set (3:1 ratio). The authors were able to rank compounds in the test set using their decision values predicted by SVM models that were built on the training set. They defined a novel score PT50, the percentage of the test set needed to be screened to recover 50% of the actives, to measure the performance of the models. With carefully selected parameters, SVM models increased the hit rates significantly, and 50% of the active compounds could be recovered by screening just 7% of the test set. The authors found that the size of the training set played a significant role in the performance of the models. A training set with 10,000 member compounds is likely the minimum size required to build a model with reasonable predictive power.

Collaboration


Dive into the Qi Zhuang Ye's collaboration.

Top Co-Authors

Avatar

Fa Jun Nan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Ya Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Mei Cui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge