Qian Ba
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qian Ba.
PLOS ONE | 2012
Qian Ba; Naiyuan Zhou; Juan Duan; Tao Chen; Miao Hao; Xinying Yang; Junyang Li; Jun Yin; Ruiai Chu; Hui Wang
Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage.
Clinical Cancer Research | 2011
Qian Ba; Miao Hao; He Huang; Junmei Hou; Shichao Ge; Zhuzhen Zhang; Jun Yin; Ruiai Chu; Hualiang Jiang; Fudi Wang; Kaixian Chen; Hong Liu; Hui Wang
Purpose: Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death, and iron overload is a significant risk factor in the development of HCC. In this study, we investigated the potential application of depriving iron by a novel iron chelator, thiosemicarbazone-24 (TSC24), in HCC treatment. Experimental Design: Two HCC cell lines and HFE knockout (HFE−/−) mice were used to determine iron chelation efficiency of TSC24. The anticancer effects of TSC24 on HCC were analyzed in vitro and in athymic xenograft mouse models. Results: Treatment with TSC24 significantly decreased the cellular iron concentration in hepatoma cells and the serum iron concentration in HFE−/− mice by blocking iron uptake and interfering with normal regulation of iron levels. Moreover, the viability of HCC cell lines was reduced by TSC24. Confirming the mechanism of the agent, this decrease in viability could be partially rescued by addition of exogenous iron. TSC24 also suppressed tumor growth in athymic mice bearing human HCC xenografts in a concentration-dependent manner, without apparent toxicity in parallel with a decrease in the serum iron level. Further studies revealed that TSC24 efficiently triggered cell-cycle arrest and apoptosis in Hep3B and HepG2 cell lines. Conclusions: TSC24 is a potent iron chelator that suppresses human HCC tumor growth by disrupting iron homeostasis, reducing available iron, and triggering cell-cycle arrest and apoptosis, without apparent host toxicity at effective doses. Thus, TSC24 shows great potential for the treatment of HCC. Clin Cancer Res; 17(24); 7625–33. ©2011 AACR.
The International Journal of Biochemistry & Cell Biology | 2011
Juan Duan; Qian Ba; Ziliang Wang; Miao Hao; Xiaoguang Li; Pingting Hu; Deyi Zhang; Ruiwen Zhang; Hui Wang
Ribosomal proteins (RPs), structural components of the ribosome involved in protein synthesis, are of significant importance in all organisms. Previous studies have suggested that some RPs may have other functions in addition to assembly of the ribosome. The small ribosomal subunits RPS7, has been reported to modulate the mdm2-p53 interaction. To further investigate the biological functions of RPS7, we used morpholino antisense oligonucleotides (MO) to specifically knockdown RPS7 in zebrafish. In RPS7-deficient embryos, p53 was activated, and its downstream target genes and biological events were induced, including apoptosis and cell cycle arrest. Hematopoiesis was also impaired seriously in RPS7-deficient embryos, which was confirmed by the hemoglobin O-dianisidine staining of blood cells, and the expression of scl, gata1 and α-E1 globin were abnormal. The matrix metalloproteinase (mmp) family genes were also activated in RPS7 morphants, indicating that improper cell migration might also cause development defects. Furthermore, simultaneously knockdown of the p53 protein by co-injecting a p53 MO could partially reverse the abnormal phenotype in the morphants. These results strengthen the hypothesis that specific ribosomal proteins regulate p53 and that their deficiency affects hematopoiesis. Moreover, our data implicate that RPS7 is a regulator of matrix metalloproteinase (mmp) family in zebrafish system. These specific functions of RPS7 may provide helpful clues to study the roles of RPs in human disease.
Environmental Health Perspectives | 2014
Qian Ba; Junyang Li; Chao Huang; Hongling Qiu; Jingquan Li; Ruiai Chu; Wei Zhang; Dong Xie; Yongning Wu; Hui Wang
Background Benzo[a]pyrene (B[a]P) is a common environmental and foodborne pollutant. Although the carcinogenicity of high-dose B[a]P has been extensively reported, the effects of long-term B[a]P exposure at lower environmental doses on cancer development are less understood. Objectives We investigated the impact of B[a]P on human hepatocellular carcinoma (HCC) progression at various levels of exposure and identified a potential intervention target. Methods We used a model based on human HCC cells exposed to various concentrations of B[a]P (i.e., 0.01, 1, or 100 nM) for 1 month to examine the effects of B[a]P on cell growth, migration, invasion, and angiogenicity. A bioluminescent murine model was established to assess tumor metastasis in vivo. Results Chronic B[a]P exposure did not alter HCC cell growth but promoted cell migration and invasion both in vitro and in vivo. There was an negative association between B[a]P exposure and the survival of tumor-bearing mice. In addition, B[a]P-treated HCC cells recruited vascular endothelial cells and promoted tumor angiogenesis, possibly through elevating vascular endothelial growth factor secretion. Furthermore, the NF-κB pathway may be an adverse outcome pathway associated with the cumulative effects of B[a]P on HCC metastasis. Conclusions These findings a) indicate that B[a]P has effects on HCC progression; b) identify a possible adverse outcome pathway; and c) contribute to a better understanding of the adverse effects of chronic exposure of B[a]P to human health. Citation Ba Q, Li J, Huang C, Qiu H, Li J, Chu R, Zhang W, Xie D, Wu Y, Wang H. 2015. Effects of benzo[a]pyrene exposure on human hepatocellular carcinoma cell angiogenesis, metastasis, and NF-κB signaling. Environ Health Perspect 123:246–254; http://dx.doi.org/10.1289/ehp.1408524
Environmental Health Perspectives | 2016
Qian Ba; Mian Li; Peizhan Chen; Chao Huang; Xiaohua Duan; Lijun Lu; Jingquan Li; Ruiai Chu; Dong Xie; Haiyun Song; Yongning Wu; Hao Ying; Xudong Jia; Hui Wang
Background: Environmental cadmium, with a high average dietary intake, is a severe public health risk. However, the long-term health implications of environmental exposure to cadmium in different life stages remain unclear. Objectives: We investigated the effects of early exposure to cadmium, at an environmentally relevant dosage, on adult metabolism and the mechanism of action. Methods: We established mouse models with low-dose cadmium (LDC) exposure in early life to examine the long-term metabolic consequences. Intestinal flora measurement by 16S rDNA sequencing, microbial ecological analyses, and fecal microbiota transplant was conducted to explore the potential underlying mechanisms. Results: Early LDC exposure (100 nM) led to fat accumulation in adult male mice. Hepatic genes profiling revealed that fatty acid and lipid metabolic processes were elevated. Gut microbiota were perturbed by LDC to cause diversity reduction and compositional alteration. Time-series studies indicated that the gut flora at early-life stages, especially at 8 weeks, were vulnerable to LDC and that an alteration during this period could contribute to the adult adiposity, even if the microbiota recovered later. The importance of intestinal bacteria in LDC-induced fat accumulation was further confirmed through microbiota transplantation and removal experiments. Moreover, the metabolic effects of LDC were observed only in male, but not female, mice. Conclusions: An environmental dose of cadmium at early stages of life causes gut microbiota alterations, accelerates hepatic lipid metabolism, and leads to life-long metabolic consequences in a sex-dependent manner. These findings provide a better understanding of the health risk of cadmium in the environment. Citation: Ba Q, Li M, Chen P, Huang C, Duan X, Lu L, Li J, Chu R, Xie D, Song H, Wu Y, Ying H, Jia X, Wang H. 2017. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environ Health Perspect 125:437–446; http://dx.doi.org/10.1289/EHP360
Chemistry: A European Journal | 2015
Xu Zhang; Qian Ba; Zhanni Gu; Diliang Guo; Yu Zhou; Yungen Xu; Hui Wang; Deju Ye; Hong Liu
Mitochondria-targeting theranostic probes that enable the simultaneously reporting of and triggering of mitochondrial dysfunctions in cancer cells are highly attractive for cancer diagnosis and therapy. Three fluorescent mitochondria-targeting theranostic probes have been developed by linking a mitochondrial dye, coumarin-3-carboximide, with a widely used traditional Chinese medicine, artemisinin, to kill cancer cells. Fluorescence images showed that the designed coumarin-artemisinin conjugates localized mainly in mitochondria, leading to enhanced anticancer activities over artemisinin. High cytotoxicity against cancer cells correlated with the strong ability to accumulate in mitochondria, which could efficiently increase the intracellular reactive oxygen species level and induce cell apoptosis. This study highlights the potential of using mitochondria-targeting fluorophores to selectively trigger and directly visualize subcellular drug delivery in living cells.
ChemMedChem | 2013
Xiao Ding; Yan Li; Li Lv; Mi Zhou; Li Han; Zhengxi Zhang; Qian Ba; Jingquan Li; Hui Wang; Hong Liu; Renxiao Wang
Considerable efforts have been made to the development of small‐molecule inhibitors of antiapoptotic B‐cell lymphoma 2 (Bcl‐2) family proteins (such as Bcl‐2, Bcl‐xL, and Mcl‐1) as a new class of anticancer therapies. Unlike general inhibitors of the entire family, selective inhibitors of each member protein can hopefully reduce the adverse side effects in chemotherapy treatments of cancers overexpressing different Bcl‐2 family proteins. In this study, we designed four series of benzylpiperazine derivatives as plausible Bcl‐2 inhibitors based on the outcomes of a computational algorithm. A total of 81 compounds were synthesized, and their binding affinities to Bcl‐2, Bcl‐xL, and Mcl‐1 measured. Encouragingly, 22 compounds exhibited binding affinities in the micromolar range (Ki<20 μM) to at least one target protein. Moreover, some compounds were observed to be highly selective binders to Mcl‐1 with no detectable binding to Bcl‐2 or Bcl‐xL, among which the most potent one has a Ki value of 0.18 μM for Mcl‐1. Binding modes of four selected compounds to Mcl‐1 and Bcl‐xL were derived through molecular docking and molecular dynamics simulations. It seems that the binding affinity and selectivity of these compounds can be reasonably interpreted with these models. Our study demonstrated the possibility for obtaining selective Mcl‐1 inhibitors with relatively simple chemical scaffolds. The active compounds identified by us could be used as lead compounds for developing even more potent selective Mcl‐1 inhibitors with potential pharmaceutical applications.
Toxicology and Applied Pharmacology | 2016
Peizhan Chen; Xiaohua Duan; Mian Li; Chao Huang; Jingquan Li; Ruiai Chu; Hao Ying; Haiyun Song; Xudong Jia; Qian Ba; Hui Wang
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscape software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human.
ChemMedChem | 2014
Chengwen Yang; Sha Chen; Mi Zhou; Yan Li; Yangfeng Li; Zhengxi Zhang; Zhen Liu; Qian Ba; Jingquan Li; Hui Wang; Xiaomei Yan; Dawei Ma; Renxiao Wang
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM) or Bcl‐2 (Ki≈1 μM). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.
PLOS ONE | 2013
Jingquan Li; Qian Ba; Jun Yin; Songjie Wu; Fangfang Zhuan; Songci Xu; Junyang Li; Joelle K. Salazar; Wei Zhang; Hui Wang
Acetylcholinesterase (AChE) is commonly used for the detection of organophosphate (OP) and carbamate (CB) insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE). Specifically, the coding sequence of DmAChE was fused with the 3′-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.