Qian-Fei Zuo
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qian-Fei Zuo.
PLOS ONE | 2012
Bo-Sheng Li; Yong-liang Zhao; Gang Guo; Wei Li; En-Dong Zhu; Xiao-Qing Luo; Xuhu Mao; Quanming Zou; Peiwu Yu; Qian-Fei Zuo; Na Li; Bin Tang; Kaiyun Liu; Bin Xiao
Background MicroRNAs (miRNAs), endogenous small non-coding RNAs, are stably detected in human plasma. Early diagnosis of gastric cancer (GC) is very important to improve the therapy effect and prolong the survival of patients. We aimed to identify whether four miRNAs (miR-223, miR-21, miR-218 and miR-25) closely associated with the tumorigenesis or metastasis of GC can serve as novel potential biomarkers for GC detection. Methodology We initially measured the plasma levels of the four miRNAs in 10 GC patients and 10 healthy control subjects by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and then compared plasma miRNA results with the expressions in cancer tissues from eight GC patients. Finally, the presence of miR-223, miR-21 and miR-218 in the plasma was validated in 60 GC patients and 60 healthy control subjects, and the areas under the receiver operating characteristic (ROC) curves of these miRNAs were analyzed. Results We found that the plasma levels of miR-223 (P<0.001) and miR-21 (P<0.001) were significantly higher in GC patients than in healthy controls, while miR-218 (P<0.001) was significantly lower. The ROC analyses yielded the AUC values of 0.9089 for miR-223, 0.7944 for miR-21 and 0.7432 for miR-218, and combined ROC analysis revealed the highest AUC value of 0.9531 in discriminating GC patients from healthy controls. Moreover, the plasma levels of miR-223 (P<0.001) and miR-21 (P = 0.003) were significantly higher in GC patients with stage I than in healthy controls. Furthermore, the plasma levels of miR-223 were significantly higher in GC patients with helicobacter pylori (Hp) infection than those without (P = 0.014), and significantly higher in healthy control subjects with Hp infection than those without (P = 0.016). Conclusions Plasma miR-223, miR-21 and miR-218 are novel potential biomarkers for GC detection.
Gut | 2015
Yuan Zhuang; Ping Cheng; Xiaofei Liu; Liu-sheng Peng; Bo-Sheng Li; Ting-ting Wang; Na Chen; Wen-hua Li; Yun Shi; Weisan Chen; Ken C. Pang; Ming Zeng; Xuhu Mao; Shi-Ming Yang; Hong Guo; Gang Guo; Tao Liu; Qian-Fei Zuo; Hui-Jie Yang; Liuyang Yang; Fang-yuan Mao; Yi-pin Lv; Quanming Zou
Objective Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Design Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Results Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. Conclusions This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis.
Cell Death and Disease | 2015
Qian-Fei Zuo; Cao Ly; Ting Yu; Li Gong; Li-Na Wang; Zhao Yl; Bin Xiao; Quanming Zou
MicroRNAs (miRNAs) deregulation is frequent in human gastric cancers (GCs), but the role of specific miRNAs involved in this disease remains elusive. MiR-22 was previously reported to act as tumor suppressors or oncogenes in diverse cancers. However, their accurate expression, function and mechanism in GC are largely unclear. Here, we found that the expression of miR-22 was significantly reduced in clinical GC tissues compared with paired adjacent normal tissues, and was significantly correlated with a more aggressive phenotype of GC in patients, and miR-22 low expression correlated with poor overall survival. The introduction of miR-22 markedly suppressed GC cell growth, migration and invasion, and inhibition of miR-22 promoted GC cell proliferation, migration and invasion in vitro. We further demonstrated that miR-22 acted as tumor suppressors through targeting extracellular matrix (ECM) remodeling member matrix metalloproteinase 14 (MMP14) and epithelial-to-mesenchymal transition (EMT) inducer Snail in GC. Moreover, ectopic expression of MMP14 or Snail restored inhibitory effects of miR-22 on cell migration and invasion in GC cells, and a negative relationship between the miR-22 expression and MMP14 or Snail mRNA levels was observed in GC. Finally, overexpression of miR-22 suppressed tumor growth, peritoneal dissemination and pulmonary metastasis in vivo. Taken together, we identified that miR-22 is a potent tumor suppressor in GC. MiR-22 downregulation promotes GC invasion and metastasis by upregulating MMP14 and Snail, and then inducing ECM remodeling and EMT. These findings provide a better understanding of the development and progression of GC and may be an important implication for future therapy of the GC.
Cell Death and Disease | 2015
Qian-Fei Zuo; Ru Zhang; B-S Li; Y-L Zhao; Yuan Zhuang; Ting Yu; Li Gong; Shengli Li; Bin Xiao; Q-M Zou
Gastric cancer (GC) is a biologically heterogeneous disease accompanying various genetic and epigenetic alterations, and the molecular mechanisms underlying this disease are complex and not completely understood. Increasing evidence shows that abnormal microRNA (miRNA) expression is involved in GC tumorigenesis, but the role of specific miRNAs involved in this disease remains elusive. MiR-141 was previously reported to act as tumor suppressors or oncogenes in diverse cancers. However, their accurate expression, function and mechanism in GC are largely unclear. Here we found that the expression of miR-141 was significantly reduced in GC compared with paired adjacent normal tissues and was significantly correlated with a more aggressive phenotype of GC in patients. Ectopic expression of miR-141 mimics in GC cell lines resulted in reduced proliferation, invasion and migration, and inhibition of miR-141 in GC cell lines promoted cell proliferation, invasion and migration in vitro. We further demonstrated that miR-141 acted as tumor suppressors through targeting transcriptional co-activator with PDZ-binding motif (TAZ) in GC. Moreover, the inverse relationship between miR-141 and its target was verified in patients and xenograft mice. Finally, overexpression of miR-141 suppressed tumor growth and pulmonary metastasis in nude mice. Take together, we identified that miR-141 is a potent tumor suppressor in the stomach, and its growth inhibitory effects are, in part, mediated through its downstream target gene, TAZ. These findings implied that miR-141 might be employed as novel prognostic markers and therapeutic targets of GC.
Cancer Immunology, Immunotherapy | 2012
Liu-sheng Peng; Yuan Zhuang; Yun Shi; Yong-liang Zhao; Ting-ting Wang; Na Chen; Ping Cheng; Tao Liu; Xiaofei Liu; Jin-yu Zhang; Qian-Fei Zuo; Xuhu Mao; Gang Guo; Dongshui Lu; Peiwu Yu; Quanming Zou
BackgroundCD8+Foxp3+ T lymphocytes have been detected in tumors. However, the distribution, phenotypic features, and regulation of these cells in gastric cancer remain unknown.MethodsThe levels of CD8+Foxp3+ T lymphocytes in the peripheral blood, tumor-draining lymph nodes, non-tumor tissues, and tumor tissues of patients with gastric cancer were detected by flow cytometry. Foxp3 induction in CD8+Foxp3− T cells was investigated in vitro. The suppressive function of CD8+Foxp3+ T lymphocytes was analyzed by their effect on CD4+ T-cell proliferation and IFN-γ production. The percentages of CD8+Foxp3+ T lymphocytes were evaluated for the association with tumor stage.ResultsThe frequency of CD8+Foxp3+ T lymphocytes in tumor tissues was significantly higher than that in non-tumor tissues, and similar results were also observed in tumor-draining lymph nodes compared with peripheral blood. Most intratumoral CD8+Foxp3+ T lymphocytes were activated effector cells (CD45RA−CD27−). TGF-β1 levels were positively correlated with the frequency of CD8+Foxp3+ T lymphocytes in tumor tissues, and in vitro TGF-β1 could induce the generation of CD8+Foxp3+ T lymphocytes in a dose-dependent manner. Furthermore, intratumoral CD8+Foxp3+ T lymphocytes suppressed the proliferation and IFN-γ production of CD4+ T cells. Finally, intratumoral CD8+Foxp3+ T lymphocytes were significantly increased with tumor progression in terms of tumor-node-metastasis (TNM) stage.ConclusionsOur data have shown that increased intratumoral CD8+Foxp3+ T lymphocytes are associated with tumor stage and potentially influence CD4+ T-cell functions, which may provide insights for developing novel immunotherapy protocols against gastric cancer.
Scientific Reports | 2016
Ting Yu; Qian-Fei Zuo; Li Gong; Li-Na Wang; Quanming Zou; Bin Xiao
T lymphocyte-mediated immune responses are critical for antitumour immunity; however, T cell function is impaired in the tumour environment. MicroRNAs are involved in regulation of the immune system. While little is known about the function of intrinsic microRNAs in CD8+ T cells in the tumour microenvironment. Here, we found that miR-491 was upregulated in CD8+ T cells from mice with colorectal cancer. Retroviral overexpression of miR-491 in CD8+ and CD4+ T cells inhibited cell proliferation and promoted cell apoptosis and decreased the production of interferon-γ in CD8+ T cells. We found that miR-491 directly targeted cyclin-dependent kinase 4, the transcription factor T cell factor 1 and the anti-apoptotic protein B-cell lymphoma 2-like 1 in CD8+ T cells. Furthermore, tumour-derived TGF-β induced miR-491 expression in CD8+ T cells. Taken together, our results suggest that miR-491 can act as a negative regulator of T lymphocytes, especially CD8+ T cells, in the tumour environment; thus, this study provides a novel insight on dysfunctional CD8+ T cells during tumourigenesis and cancer progression. In conclusion, miR-491 may be a new target for antitumour immunotherapy.
PLOS ONE | 2016
Hui-Jie Yang; Jinyong Zhang; Chao Wei; Liuyang Yang; Qian-Fei Zuo; Yuan Zhuang; Youjun Feng; Swaminath Srinivas; Hao Zeng; Quanming Zou
Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d) crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.
Scientific Reports | 2016
Liuyang Yang; Changzhi Cai; Qiang Feng; Yun Shi; Qian-Fei Zuo; Hui-Jie Yang; Haiming Jing; Chao Wei; Yuan Zhuang; Quanming Zou; Hao Zeng
Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia.
International Journal of Nanomedicine | 2015
Hongwu Sun; Chao Wei; BaoShuai Liu; Haiming Jing; Qiang Feng; Yanan Tong; Yun Yang; Liuyang Yang; Qian-Fei Zuo; Yi Zhang; Quanming Zou; Hao Zeng
The Gram-positive bacterial pathogen methicillin-resistant Staphylococcus aureus (MRSA) can cause infections in the bloodstream, endocardial tissue, respiratory tract, culture-confirmed skin, or soft tissue. There are currently no effective vaccines, and none are expected to become available in the near future. An effective vaccine capable of eliciting both systemic and mucosal immune responses is also urgently needed. Here, we reported a novel oil-in-water nanoemulsion adjuvant vaccine containing an MRSA recombination protein antigen, Cremophor EL-35(®) as a surfactant, and propylene glycol as a co-surfactant. This nanoemulsion vaccine, whose average diameter was 31.34±0.49 nm, demonstrated good protein structure integrity, protein specificity, and good stability at room temperature for 1 year. The intramuscular systemic and nasal mucosal immune responses demonstrated that this nanoemulsion vaccine could improve the specific immune responses of immunoglobulin (Ig)G and related subclasses, such as IgG1, IgG2a, and IgG2b, as well as IgA, in the serum after Balb/c mice intramuscular immunization and C57 mice nasal immunization. Furthermore, this nanoemulsion vaccine also markedly enhanced the interferon-γ and interleukin-17A cytokine cell immune response, improved the survival ratio, and reduced bacterial colonization. Taken together, our results show that this novel nanoemulsion vaccine has great potential and is a robust generator of an effective intramuscular systemic and nasal mucosal immune response without the need for an additional adjuvant. Thus, the present study serves as a sound scientific foundation for future strategies in the development of this novel nanoemulsion adjuvant vaccine to enhance both the intramuscular systemic and nasal mucosal immune responses.
RSC Advances | 2018
Liuyang Yang; Chao Wei; Yun Yang; Yanan Tong; Sha Yang; Liu-sheng Peng; Qian-Fei Zuo; Yuan Zhuang; Ping Cheng; Hao Zeng; Quanming Zou; Hongwu Sun
Nanoemulsion adjuvants-based vaccines have potent induced immune responses against methicillin-resistant Staphylococcus aureus (MRSA) infection. However, the efficacies and immune responses of different antigen-attaching ways on self-made nanoemulsion adjuvants remain unknown. In this study, we designed three formulations of nanoemulsion adjuvants (encapsulation, mixture, and combination) to explore their immune response-enhancing effects and their underlying mechanism in a systemic infection model of MRSA. Our results showed that the three nanoemulsion-attachment ways formulated with a fusion antigen of MRSA (HlaH35LIsdB348–465) all improved humoral and cellular immune responses. When compared with the mixture and combination formulations, the nanoemulsion-encapsulation group effectively promoted the antigen uptake of dendritic cells (DCs) in vitro, the activation of DC in draining lymph nodes and the delayed release of antigen at injection sites in vivo. Moreover, the encapsulation group induced a more ideal protective efficacy in a MRSA sepsis model by inducing more potent antibody responses and a Th1/Th17 biased CD4+ T cell response when compared with the other two attachment ways. Our findings suggested that the encapsulated formulation of vaccine with nanoemulsion adjuvant is an effective attachment way to provide protective immunity against MRSA infection.