Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qian Xu is active.

Publication


Featured researches published by Qian Xu.


Nanotechnology | 2013

Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin

Miao Guo; Wen-Ting Rong; Jie Hou; Dong-Fang Wang; Yu Lu; Ying Wang; Shu-Qin Yu; Qian Xu

Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.


Journal of Chromatography A | 2016

A high-throughput nanofibers mat-based micro-solid phase extraction for the determination of cationic dyes in wastewater

Feifei Qi; Liangliang Qian; Jingjing Liu; Xiaoqing Li; Lingeng Lu; Qian Xu

This study used nanofibers mat (NFsM)-based micro-SPE (μ-SPE) in 96-well plate format as a novel high-throughput sample preparation technique prior to the determination of cationic dyes in wastewater using HPLC-DAD. P-Toluene sulfonate (PTS(-)) doped polypyrrole (PPy) functionalized NFsM (PTS-PPy NFsM) was optimized as SPE sorbent in aspects of PPy form (particles and NFsM) and its doped anions (Cl(-) and PTS(-)), which showed good extraction efficiency and adsorption capacity for cationic dyes (Auramine-O, Chrysoidine and Rhodamine-B). Under the optimal conditions, the limits of detection (LODs) were between 0.3 and 0.5μg/L, and the linearity was achieved in the concentration ranging from 1.0 to 150.0μg/L with correlation coefficients (R) between 0.992 and 0.999. Compared with the published SPE methods, this approach demonstrated its advantages such as shorter extraction time (0.3min per sample), lower requirement sorbent (2.0mg), lower volume of organic solvent (0.7mL), higher recovery (90.1-99.1%) and precision (RSDs<6.9%). With this developed method, we have successfully analyzed the dyeing industry wastewater, which meets the Discharge Standards of Water Pollutants for Dyeing and Finishing of Textile Industry in China. The concentrations of three analyzed cationic dyes were from 2.9 to 13.9μg/L. The NFsM-based μ-SPE technique is practically a high-throughput sample preparation procedure that can accurately assess the pollutants in the wastewater from dyeing industry.


Talanta | 2015

Disks solid phase extraction based polypyrrole functionalized core–shell nanofibers mat

Feifei Qi; Xiaoqing Li; Bi-Yi Yang; Fei Rong; Qian Xu

A novel disks solid phase extraction (SPE) based on polypyrrole (PPy) functionalized core-shell electrospun nanofibers mat was proposed. The performance of the established disks SPE technique was evaluated in the extraction of trace polar analytes from environmental water samples. Disulphonated (acid yellow 9) and monosulphonated azo dyes (acid orange 7 and metanil yellow) were selected as typical model analytes. Under the optimum conditions, detection limits were 0.15-0.3 μg/L for all target analytes and the enrichment coefficients were 106-121. The recoveries of sulfonated azo dyes added to typical environmental water samples were 87.6-112.3%, suggesting that the interferences of the sample matrix did not affect the enrichment. Compared with existing methods, the device in this study showed higher recovery, lower detection limit and better precision. Moreover, the miniaturized disks SPE technique for sample preparation is simple and fast, with significantly reduced sorbent bed mass (2.5 mg) and eluent volume (500 μL). These results indicate that PPy nanofibers mat-based disks SPE may be a promising device that can effectively extract the polar species in water samples.


ACS Applied Materials & Interfaces | 2015

TPGS2k/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells.

Dong-Fang Wang; Wen-Ting Rong; Yu Lu; Jie Hou; Shan-Shan Qi; Qing Xiao; Jue Zhang; Jin You; Shu-Qin Yu; Qian Xu

In this study, we successfully synthesized d-α-tocopheryl polyethylene glycol 2000 succinate (TPGS2k) and prepared TPGS2k-modified poly(lactic-co-glycolic acid) nanoparticles (TPGS2k/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), designated TPGS2k/PLGA/SN-38 NPs. Characterization measurements showed that TPGS2k/PLGA/SN-38 NPs displayed flat and spheroidal particles with diameters of 80-104 nm. SN-38 was encapsulated in TPGS2k emulsified PLGA NPs with the entrapment efficiency and loading rates of SN-38 83.6 and 7.85%, respectively. SN-38 could release constantly from TPGS2k/PLGA/SN-38 NPs in vitro. TPGS2k/PLGA/SN-38 NPs induced significantly higher cytotoxicity on A549 cells and the multidrug resistance (MDR) cell line (A549/DDP cells and A549/Taxol cells) compared with free SN-38. Further studies on the mechanism of the NPs in increasing the death of MDR cells showed that following the SN-38 releasing into cytoplasm the remaining TPGS2k/PLGA NPs could reverse the P-gp mediated MDR via interfering with the structure and function of mitochondria and rather than directly inhibiting the enzymatic activity of P-gp ATPase. Therefore, TPGS2k/PLGA NPs can reduce the generation of ATP and the release of energy for the requisite of P-gp efflux transporters. The results indicated that TPGS2k/PLGA NPs could become the nanopharmaceutical materials with the capability to reversal MDR and improve anticancer effects of some chemotherapy drugs as P-gp substrates.


Toxicological Sciences | 2014

Food Emulsifier Polysorbate 80 Increases Intestinal Absorption of Di-(2-Ethylhexyl) Phthalate in Rats

Yu Lu; Ying-Ying Wang; Nan Yang; Dan Zhang; Fengyi Zhang; Hai-Tao Gao; Wen-Ting Rong; Shu-Qin Yu; Qian Xu

The aim of the present research was to explore whether food emulsifier polysorbate 80 can enhance the absorption of di-(2-ethylhexyl) phthalate (DEHP) and its possible mechanism. We established the high-performance liquid chromatography (HPLC) method for detecting DEHP and its major metabolite, mono-ethylhexyl phthalate (MEHP) in rat plasma, and then examined the toxicokinetic and bioavailability of DEHP with or without polysorbate 80 in rats. The study of its mechanism to increase the absorption of phthalates demonstrated that polysorbate 80 can induce mitochondrial dysfunction in time- and concentration-dependence manners in Caco-2 cells by reducing mitochondrial membrane potential, diminishing the production of the adenosine triphosphate, and decreasing the activity of electron transport chain. Our results indicated that food emulsifier applied in relatively high concentrations in even the most frequently consumed foods can increase the absorption of DEHP, and its role may be related to the structure and function damages of mitochondria in enterocytes.


Nanoscale Research Letters | 2015

Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics

Bi-Yi Yang; Yang Cao; Feifei Qi; Xiaoqing Li; Qian Xu

A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8xa0mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.


Food and Chemical Toxicology | 2017

Effects of six priority controlled phthalate esters with long-term low-dose integrated exposure on male reproductive toxicity in rats

Hai-Tao Gao; Run Xu; Wei-Xin Cao; Liangliang Qian; Min Wang; Lingeng Lu; Qian Xu; Shu-Qin Yu

Human beings are inevitably exposed to ubiquitous phthalate esters (PEs) surroundings. The purposes of this study were to investigate the effects of long-term low-dose exposure to the mixture of six priority controlled phthalate esters (MIXPs): dimethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethyhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), on male rat reproductive system and further to explore the underlying mechanisms of the reproductive toxicity. The male rats were orally exposed to either sodium carboxymethyl cellulose as controls or MIXPs at three different low-doses by gavage for 15 weeks. Testosterone and luteinizing hormone (LH) in serum were analyzed, and pathological examinations were performed for toxicity evaluation. Steroidogenic proteins (StAR, P450scc, CYP17A1 and 17β-HSD), cell cycle and apoptosis-related proteins (p53, Chk1, Cdc2, CDK6, Bcl-2 and Bax) were measured for mechanisms exploration. MIXPs with long-term low-dose exposure could cause male reproductive toxicity to the rats, including the decrease of both serum and testicular testosterone, and the constructional damage of testis. These effects were related to down-regulated steroidogenic proteins, arresting cell cycle progression and promoting apoptosis in rat testicular cells. The results indicate that MIXPs with long-term low-dose exposure may pose male reproductive toxicity in human.


International Journal of Nanomedicine | 2017

Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance

DanDan Zhang; Yan Yan Kong; Jia Hui Sun; Shao Jie Huo; Min Zhou; Yi Ling Gui; Xu Mu; Huan Chen; Shu-Qin Yu; Qian Xu

Combination chemotherapy in clinical practice has been generally accepted as a feasible strategy for overcoming multidrug resistance (MDR). Here, we designed and successfully prepared a co-delivery system named S-D1@L-D2 NPs, where denoted some smaller nanoparticles (NPs) carrying a drug doxorubicin (DOX) were loaded into a larger NP containing another drug (vincristine [VCR]) via water-in-oil-in-water double-emulsion solvent diffusion-evaporation method. Chitosan-alginate nanoparticles carrying DOX (CS-ALG-DOX NPs) with a smaller diameter of about 20 nm formed S-D1 NPs; vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles carrying VCR (TPGS-PLGA-VCR NPs) with a larger diameter of about 200 nm constituted L-D2 NPs. Some CS-ALG-DOX NPs loaded into TPGS-PLGA-VCR NPs formed CS-ALG-DOX@TPGS-PLGA-VCR NPs. Under the acidic environment of cytosol and endosome or lysosome in MDR cell, CS-ALG-DOX@TPGS-PLGA-VCR NPs released VCR and CS-ALG-DOX NPs. VCR could arrest cell cycles at metaphase by inhibiting microtubule polymerization in the cytoplasm. After CS-ALG-DOX NPs escaped from endosome, they entered the nucleus through the nuclear pore and released DOX in the intra-nuclear alkaline environment, which interacted with DNA to stop the replication of MDR cells. These results indicated that S-D1@L-D2 NPs was a co-delivery system of intracellular precision release loaded drugs with pH-sensitive characteristics. S-D1@L-D2 NPs could obviously enhance the in vitro cytotoxicity and the in vivo anticancer efficiency of co-delivery drugs, while reducing their adverse effects. Overall, S-D1@L-D2 NPs can be considered an innovative platform for the co-delivery drugs of clinical combination chemotherapy for the treatment of MDR tumor.


Journal of Chromatography B | 2016

SPE-UPLC-MS/MS for the determination of phthalate monoesters in rats urine and its application to study the effects of food emulsifier on the bioavailability of priority controlling PAEs.

Run Xu; Hai-Tao Gao; F. Zhu; Wei-Xin Cao; Y.H.M. Yan; X. Zhou; Qian Xu; W.L. Ji

This research was mainly focused on the effects of food emulsifier on the bioavailability of six priority controlling phthalate acid esters (PAEs) for the further accurate assessment of their toxic effects, using the corresponding phthalate acid monoesters (PAMEs) in rats urine as biomarkers. Glycerin monostearate was chosen as typical food emulsifier. A method was established to determine PAMEs in urine from rats either in experimental group (integrated gavaged with glycerin monostearate and PAEs) or in control group (gavaged with PAEs only), by using solid-phase extraction (SPE) coupled with ultra performance liquid chromatography tandem mass spectrometry (SPE-UPLC-MS/MS). Extraction recoveries were more than 75% for all the PAMEs; the calibration curve was linear in the range of 1.0-1000.0ng/mL with R(2)>0.995; the limits of detection (LOD) were 0.30ng/mL-0.50ng/mL. In addition, by analysing quality control (QC) urine samples in 3 days, it showed that the method was precise and accurate, for the intra-day and inter-day RSD within 16%, and the accuracy more than 82%. Internal exposure amount of all PAEs in experimental group was significantly higher than that in control group with p values of less than 0.05 except for butyl benzyl phthalates (BBP) (P=0.07). The bioavailability of all PAEs ranged from 5.03% to 109.35% with the presence of food emulsifiers glycerin monostearate, observably higher than that without glycerin monostearate (1.12% to 54.39%). It indicated that food emulsifiers increased the bioavailability of PAEs and may lead to potential food safety risk, which should bring awareness and be further studied.


International Journal of Environmental Analytical Chemistry | 2015

Application of Nylon6/Polypyrrole core–shell nanofibres mat as solid-phase extraction adsorbent for the determination of atrazine in environmental water samples

Bi-Yi Yang; Feifei Qi; Xiaoqing Li; Jingjing Liu; Fei Rong; Qian Xu

A novel solid-phase extraction (SPE) system, based on a new sorbent of Nylon6/Polypyrrole (PA6/PPy) core–shell nanofibres mat and a new packing format of SPE disks, is presented in this paper. A series of related parameters that may affect the efficiency, such as the kind of eluent and its volume, the amount of nanofibres mat, ionic strength, pH of the sample, flow rate of the sample and volume of the sample, have been investigated systematically. Under the optimised conditions, the target analyte in 10 mL water samples can be completely extracted by a 3.0 mg PA6/PPy nanofibres mat and easily eluted by 400 µL acetonitrile. Around 20 µL elution was injected directly to HPLC-UV for determination, without further concentration. Besides, the nanofibres mat could be repeatedly used up to six cycles. Satisfactory linearity was achieved in the range of 0.1–40.0 ng/mL with a correlation coefficient of 0.9999. The limit of detection (LOD) (3 S/N) was 0.03 ng/mL, which could meet the determination requirements of atrazine as per the European Union legislation, US. Safe Drinking Water Act and the State Environmental Protection Administration of China. The simple, effective and economic method was proposed for the determination of atrazine in environmental water at trace level. The recoveries ranged from 94.73 to 114.92%, with relative standard deviations (RSDs) of 2.5–4.2%, and were obtained from tap water and lake water samples with atrazine at 2.0 ng/mL, suggesting the actual feasibility of the proposed method in environmental water samples.

Collaboration


Dive into the Qian Xu's collaboration.

Top Co-Authors

Avatar

Shu-Qin Yu

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Run Xu

Southeast University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Ting Rong

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Yu Lu

Nanjing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge