Qianchun Deng
Crops Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qianchun Deng.
Bioresource Technology | 2012
Mingming Zheng; Yong Lu; Ling Dong; Pingmei Guo; Qianchun Deng; Wenlin Li; Yu-Qi Feng; Fenghong Huang
In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting immobilized CRL increased remarkably its stability at high temperature in comparison to free CRL. The immobilized CRL was used as biocatalysts for enzymatic esterification of phytosterols with free fatty acids (FFAs) to produce phytosterol esters. The phytosterols linolenate esterification degree of 95.3% was obtained under the optimized condition. Phytosterols esters could also been converted in high yields to the corresponding long-chain acyl esters via transesterification with methyl esters of fatty acids (80.5%) or triacylglycerols (above 95.5%) using mixed-mode silica particles immobilized CRL as biocatalyst. Furthermore, the immobilized CRL by absorption retained 78.6% of their initial activity after 7 recycles.
Ultrasonics Sonochemistry | 2012
Mingming Zheng; Lian Wang; Fenghong Huang; Ling Dong; Pingmei Guo; Qianchun Deng; Wenlin Li; Chang Zheng
This study is focused on the enzymatic esterification of phytosterols with different acyl donors to produce the corresponding phytosterol esters catalyzed by Canadia sp. 99-125 lipase under ultrasound irradiation. An ultrasonic frequency of 35 kHz, power of 200 W and time of 1h was determined to guarantee satisfactory degree of esterification and lipase activity. The influence of temperature, substrates concentration and molar ratio was investigated subsequently. The optimum production was achieved in isooctane system at 60°C with phytosterol concentration of 150 μmol/mL and phytosterol to fatty acid molar ratio of 1:1.5, resulting in a phytosterol esters conversion of above 85.7% in short reaction time (8h). Phytosterols esters could also be converted in high yields to the corresponding long-chain acyl esters via transesterification with triacylglycerols (above 90.3%) under ultrasound irradiation. In optimum conditions, the overall esterification reaction rate using the ultrasonic pretreatment process was above 2-fold than that of mechanical stirring process without damage the lipase activity.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2010
J. P. Xu; Shuang Rong; Bijun Xie; Zhida Sun; Qianchun Deng; Hailei Wu; Wei Bao; Di Wang; Ping Yao; Fenghong Huang; Liegang Liu
The major purpose of this study was to determine the effects of procyanidins extracted from the lotus seedpod on cAMP-response element-binding protein phosphorylation in hippocampus and cerebral cortex in cognitively impaired aged rats. Based on Morris water maze, aged unimpaired and aged impaired rats were chosen from aged rats. Comparing with young and aged unimpaired animals, aged impaired rats exhibited significant reduction in hippocampal but not cortical cAMP-response element-binding phosphorylation states as well as brain-derived neurotrophic factor messenger RNA and protein expressions, which were accompanied by decreased phosphorylation states of hippocampal extracellular signal-related kinase (42/44) and calcium calmodulin kinase IV. Lotus seedpod supplementation (50 and 100 mg/kg body weight intragastric administration) for 7 weeks significantly reversed all these declines happened in hippocampus except calcium calmodulin kinase IV phosphorylation levels. These results suggested that lotus seedpod might enhance cAMP-response element-binding-dependent transcription through the activation of extracellular signal-related kinase signalling pathway, which might contribute to its ameliorative effects on cognitive deficits in aged impaired animals.
Biosensors and Bioelectronics | 2015
Xia Xiang; Jianbin Shi; Fenghong Huang; Mingming Zheng; Qianchun Deng; Jiqu Xu
A new MoS2 nanosheet-based fluorescent biosensor for protein detection is developed. This method combines the terminal protection of small-molecule-linked DNA (TPSMLD) and exonuclease III (Exo III)-aided DNA recycling amplification to convert protein assay into the highly sensitive detection of DNA. Taking the streptavidin (SA)-biotin system as a model, a detection limit of 0.67 ng mL(-1) SA is obtained with a good selectivity. The study demonstrated here not only offers simple, sensitive and selective detection method for protein assay, but also will expand the application of the emerging 2D nanomaterials into biological assay.
Lipids in Health and Disease | 2012
Jiqu Xu; Wei Yang; Qianchun Deng; Qingde Huang; Jin’e Yang; Fenghong Huang
BackgroundAtherosclerosis is a major manifestation of the pathophysiology underlying cardiovascular disease. Flaxseed oil (FO) and α-lipoic acid (LA) have been reported to exert potential benefit to cardiovascular system. This study tried to assess the effect of supplement of FO and LA combination on the atherosclerosis risk factors in rats fed a high-fat diet.MethodsLA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO+LA) when used. The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (HFD group), or 75% lard and 25% FO+LA (L-FO+LA group), or 50% lard and 50% FO+LA (M-FO+LA group), or FO+LA (H-FO+LA group). Animals were fed for 10 weeks and then killed for blood collection.ResultsSupplement of FO and LA combination significantly enhanced plasma antioxidant defense capacities, as evaluated by the marked increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant reduction in lipid peroxidation. Simultaneous intake of FO and LA also reduced plasma TG, TC and LDL-C contents and elevated the ratio of HDL-C/LDL-C. Besides, in parallel with the increase of FO and LA combination, plasma IL-6 and CRP levels were remarkably reduced.ConclusionSupplement of FO and LA combination may contribute to prevent atherogenesis by improving plasma oxidative stress, lipid profile and inflammation.
Lipids in Health and Disease | 2011
Jiqu Xu; Xiaoqi Zhou; Qianchun Deng; Qingde Huang; Jin’e Yang; Fenghong Huang
BackgroundMicronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to cardiovascular system, but most of these micronutrients are removed by the refining process. The aim of this study was to determine the effect of rapeseed oil fortified with these micronutrients on the atherosclerosis risk factors in rats fed a high-fat diet.MethodsThe rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified refined rapeseed oil with low, middle and high quantities of these micronutrients (L-, M- and H-FRRO). Forty male SD rats were divided into four groups. One group received RRO diet and other groups received L-, M- and H-FRRO diet for 10 weeks.ResultsMicronutrients supplementation significantly increased plasma antioxidant defense capacities, as evaluated by the significant elevation in the activities of GPx, CAT and SOD as well as the level of GSH, and the significant decline in lipid peroxidation. These micronutrients also reduced the plasma contents of TG, TC and LDL-C and increased the ratio of HDL-C/LDL-C. In addition, in parallel with the enhancement of these micronutrients, plasma levels of IL-6 and CRP declined remarkably.ConclusionRapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent atherogenesis by ameliorating plasma oxidative stress, lipid profile and inflammation.
BMC Complementary and Alternative Medicine | 2012
Jiqu Xu; Xiaoqi Zhou; Chang Chen; Qianchun Deng; Qingde Huang; Jin’e Yang; Nianhong Yang; Fenghong Huang
BackgroundConstipation is a very common health problem in the world. Intake of sufficient amount of dietary fibers is a cornerstone in the prevention and treatment of constipation. As a traditional medicine, flaxseed has been used to treat constipation for centuries, but the controlled trials are rare. The purpose of the present study was to assess that whether partially defatted flaxseed meal (PDFM) has the potential role to facilitate fecal output in normal and experimental constipated mice.MethodsAfter supplemented with 2.5%, 5% and 10% (w/w) PDFM (L-, M- and H -PDFM) for 14 days, the constipation models of mice were induced by atropine-diphenoxylate. The small intestinal transit rates, start time of defecation, amount of defecation and wet weight of feces were researched in normal and constipation model mice.ResultsM- and H-PDFM significantly increase small intestinal transit rates in constipation model mice. All dose of PDFM markedly shortened the start time of defecation and M- and H-PDFM significantly increase stool frequency and weight in both normal and constipation model mice.ConclusionsPDFM may be a useful laxative to facilitate fecal output in normal and constipation conditions.
Journal of Agricultural and Food Chemistry | 2013
Mingming Zheng; Yong Lu; Fenghong Huang; Lian Wang; Pingmei Guo; Yu-Qi Feng; Qianchun Deng
In this study, a novel mixed-mode composite material, SiO(2)@P(MAA-co-VBC-co-DVB), was prepared via the hyper-cross-linking of its precursor, which was produced via suspension polymerization in the presence of SiO(2) particles. Candida rugosa lipase (CRL) was immobilized on the SiO(2)@P(MAA-co-VBC-co-DVB) particles via hydrophobic and weak cation-exchange interaction. The resulting immobilized CRL showed much better thermal stability and reusability in comparison to free CRL. On the basis of the excellent biocatalyst prepared, a method for high-efficiency enzymatic esterification of phytosterols with different fatty acids to produce the corresponding phytosterol esters was developed. Six phytosterol esters with conversions above 92.1% and controllable fatty acid composition were obtained under the optimized conditions: 80 μmol/mL phytosterols, 160 μmol/mL linolenic acid, and 15 mg/mL CRL@HPCS at 300 rpm and 50 °C for 7 h in 30 mL of isooctane. The prepared phytosterol esters possessed a low acid value (≤0.86 mg of KOH/g), peroxide value (≤3.3 mequiv/kg), and conjugated diene value (≤1.74 mmol/kg) and high purity (≥97.8%) and fatty solubility (≥28.9 g/100 mL). All the characteristics favored the wide application of phytosterol esters with controllable fatty acid composition in different fields of functional food.
Lipids in Health and Disease | 2013
Jiqu Xu; Hui Gao; Lin Song; Wei Yang; Chang Chen; Qianchun Deng; Qingde Huang; Jin’e Yang; Fenghong Huang
BackgroundIntake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet.MethodsLA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection.ResultsIntake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation.ConclusionThe combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress.
RSC Advances | 2015
Mingming Zheng; Li-Jing Mao; Fenghong Huang; Xia Xiang; Qianchun Deng; Yu-Qi Feng
Although enzymatic catalysis is an attractive approach for the green synthesis of chemicals, it often suffers from low reactivity and poor stability during the reaction. In this study, lipase from Candida rugosa (CRL) was immobilized and stabilized on magnetically-separable, mixed-function-grafted, large pore mesostructured magnetic hollow mesoporous silica microspheres (MHMSS) by means of multiple-mode adsorption based on both hydrophobic and strong cation-exchange interactions. Benefiting from the hollow large mesoporous structure, ultrafast enzyme immobilization could be realized in 5 min, with a high loading of CRL (95.2 mg g−1). Stabilized CRL@MHMSS was successfully used for the ultrafast transesterification of phytosterol with fatty acids and triglycerides in a solvent-free system, which reached high conversions (≧90.9%) within 15 min at 55 °C. Magnetic separation of MHMSS facilitated the repeated usage of CRL@MHMSS for more than 50 successive reactions without damaging its catalytic activity. Its high activity and stability make the MHMSS immobilized enzyme an attractive catalyst for green synthesis in a solvent-free system.