Qianghua Xia
Children's Hospital of Philadelphia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qianghua Xia.
Annals of the New York Academy of Sciences | 2013
Qianghua Xia; Struan F. A. Grant
It has long been known that there is a genetic component to obesity, and that characterizing this underlying factor would likely offer the possibility of better intervention in the future. Monogenic obesity has proved to be relatively straightforward, with a combination of linkage analysis and mouse models facilitating the identification of multiple genes. In contrast, genome‐wide association studies have successfully revealed a variety of genetic loci associated with the more common form of obesity, allowing for very strong consensus on the underlying genetic architecture of the phenotype for the first time. Although a number of significant findings have been made, it appears that very little of the apparent heritability of body mass index has actually been explained to date. New approaches for data analyses and advances in technology will be required to uncover the elusive missing heritability, and to aid in the identification of the key causative genetic underpinnings of obesity.
Human Molecular Genetics | 2013
Jin Li; Joseph T. Glessner; Haitao Zhang; Cuiping Hou; Zhi Wei; Jonathan P. Bradfield; Frank D. Mentch; Yiran Guo; Cecilia Kim; Qianghua Xia; Rosetta M. Chiavacci; Kelly Thomas; Haijun Qiu; Struan F. A. Grant; Susan L. Furth; Hakon Hakonarson; Patrick Sleiman
Hematological traits are important clinical indicators, the genetic determinants of which have not been fully investigated. Common measures of hematological traits include red blood cell (RBC) count, hemoglobin concentration (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), MCH concentration (MCHC), mean corpuscular volume (MCV), platelet count (PLT) and white blood cell (WBC) count. We carried out a genome-wide association study of the eight common hematological traits among 7943 African-American children and 6234 Caucasian children. In African Americans, we report five novel associations of HBE1 variants with HCT and MCHC, the alpha-globin gene cluster variants with RBC and MCHC, and a variant at the ARHGEF3 locus with PLT, as well as replication of four previously reported loci at genome-wide significance. In Caucasians, we report a novel association of variants at the COPZ1 locus with PLT as well as replication of four previously reported loci at genome-wide significance. Extended analysis of an association observed between MCH and the alpha-globin gene cluster variants demonstrated independent effects and epistatic interaction at the locus, impacting the risk of iron deficiency anemia in African Americans with specific genotype states. In summary, we extend the understanding of genetic variants underlying hematological traits based on analyses in African-American children.
International Journal of Endocrinology | 2014
Kevin J. Basile; Matthew E. Johnson; Qianghua Xia; Struan F. A. Grant
Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context.
BMJ open diabetes research & care | 2014
Matthew E. Johnson; Jianhua Zhao; Jonathan Schug; Sandra Deliard; Qianghua Xia; Vanessa C. Guy; Jesus Sainz; Klaus H. Kaestner; Andrew D. Wells; Struan F. A. Grant
Background The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide association studies (GWAS) loci associated primarily with endocrine (in particular T2D) and cardiovascular traits. Methods In order to further explore if this observed phenomenon occurs in other cell lines, we carried out ChIP-seq in HepG2 cells and leveraged ENCODE data for five additional cell lines. Given that only a minority of the predicted genetic component to most complex traits has been identified to date, plus our GWAS-related observations with respect to TCF7L2 occupancy, we investigated if restricting association analyses to the genes yielded from this approach, in order to reduce the constraints of multiple testing, could reveal novel T2D loci. Results We found strong evidence for the continued enrichment of endocrine and cardiovascular GWAS categories, with additional support for cancer. When investigating all the known GWAS loci bound by TCF7L2 in the shortest gene list, derived from HCT116, the coronary artery disease-associated variant, rs46522 at the UBE2Z-GIP-ATP5G1-SNF8 locus, yielded significant association with T2D within DIAGRAM. Furthermore, when we analyzed tag-SNPs (single nucleotide polymorphisms) in genes not previously implicated by GWAS but bound by TCF7L2 within 5 kb, we observed a significant association of rs4780476 within CPPED1 in DIAGRAM. Conclusions ChIP-seq data generated with this GWAS-implicated transcription factor provided a biologically plausible method to limit multiple testing in the assessment of genome-wide genotyping data to uncover two novel T2D-associated loci.
European Journal of Human Genetics | 2015
Qianghua Xia; Sandra Deliard; Chao-Xing Yuan; Matthew E. Johnson; Struan F. A. Grant
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal variant within this gene. We carried out oligo pull-down combined with mass spectrophotometry (MS) to elucidate the specific transcriptional machinery across this SNP using protein extracts from HCT116 cells. We observed that poly (ADP-ribose) polymerase 1 (PARP-1) is by far the most abundant binding factor. Pursuing the possibility of a feedback mechanism, we observed that PARP-1, along with the next most abundant binding proteins, DNA topoisomerase I and ATP-dependent RNA helicase A, dimerize with the TCF7L2 protein and with each other. We uncovered further evidence of a feedback mechanism using a luciferase reporter approach, including observing expression differences between alleles for rs7903146. We also found that there was an allelic difference in the MS results for proteins with less abundant binding, namely X-ray repair cross-complementing 5 and RPA/p70. Our results point to a protein complex binding across rs7903146 within TCF7L2 and suggests a possible mechanism by which this locus confers its T2D risk.
PeerJ | 2017
Rana Dajani; Jin Li; Zhi Wei; Michael March; Qianghua Xia; Yousef Khader; Nancy Hakooz; Raja Fatahallah; Mohammed El-Khateeb; Ala Arafat; Tareq Saleh; Abdel Rahman Dajani; Zaid Al-Abbadi; Mohamed Abdul Qader; Abdel Halim Shiyab; Anwar M. Bateiha; Kamel Ajlouni; Hakon Hakonarson
The prevalence of Type II Diabetes (T2D) has been increasing and has become a disease of significant public health burden in Jordan. None of the previous genome-wide association studies (GWAS) have specifically investigated the Middle East populations. The Circassian and Chechen communities in Jordan represent unique populations that are genetically distinct from the Arab population and other populations in the Caucasus. Prevalence of T2D is very high in both the Circassian and Chechen communities in Jordan despite low obesity prevalence. We conducted GWAS on T2D in these two populations and further performed meta-analysis of the results. We identified a novel T2D locus at chr20p12.2 at genome-wide significance (rs6134031, P = 1.12 × 10−8) and we replicated the results in the Wellcome Trust Case Control Consortium (WTCCC) dataset. Another locus at chr12q24.31 is associated with T2D at suggestive significance level (top SNP rs4758690, P = 4.20 × 10−5) and it is a robust eQTL for the gene, MLXIP (P = 1.10 × 10−14), and is significantly associated with methylation level in MLXIP, the functions of which involves cellular glucose response. Therefore, in this first GWAS of T2D in Jordan subpopulations, we identified novel and unique susceptibility loci which may help inform the genetic underpinnings of T2D in other populations.
Aging and Disease | 2018
Qianghua Xia; Sumei Lu; Julian Ostrovsky; Shana E. McCormack; Marni J. Falk; Struan F. A. Grant
TCF7L2 is located at one of the most strongly associated type 2 diabetes loci reported to date. We previously reported that the most abundant member of a specific protein complex to bind across the presumed causal variant at this locus, rs7903146, was poly [ADP-ribose] polymerase type 1 (PARP-1). We analyzed the impact of PARP-1 inhibition on C. elegans health in the setting of hyperglycemia and on glucose-stimulated GLP-1 secretion in human intestinal cells. Given that high glucose concentrations progressively shorten the lifespan of C. elegans, in part by impacting key well-conserved insulin-modulated signaling pathways, we investigated the effect of PARP-1 inhibition with Olaparib on the lifespan of C. elegans nematodes under varying hyperglycemic conditions. Subsequently, we investigated whether Olaparib treatment had any effect on glucose-stimulated GLP-1 secretion in the human NCI-H716 intestinal cell line, a model system for the investigation of enteroendocrine function. Treatment with 100uM Olaparib in nematodes exposed to high concentrations of glucose led to significant lifespan rescue. The beneficial lifespan effect of Olaparib appeared to require both PARP-1 and TCF7L2, since treatment had no effect in hyperglycemic conditions in knock-out worm strains for either of these homologs. Further investigation using the NCI-H716 cells revealed that Olaparib significantly enhanced secretion of the incretin, GLP-1, plus the gene expression of TCF7L2, GCG and PC1. These data from studies in both C. elegans and a human cell line suggest that PARP-1 inhibition offers a novel therapeutic avenue to treat type 2 diabetes.
Diabetologia | 2016
Qianghua Xia; Alessandra Chesi; Elisabetta Manduchi; Brian T. Johnston; Sumei Lu; Michelle Leonard; Ursula W. Parlin; Eric Rappaport; Peng Huang; Andrew D. Wells; Gerd A. Blobel; Matthew E. Johnson; Struan F. A. Grant
Calcified Tissue International | 2014
Matthew E. Johnson; Sandra Deliard; Fengchang Zhu; Qianghua Xia; Andrew D. Wells; Kurt D. Hankenson; Struan F. A. Grant
Journal of Visualized Experiments | 2013
Sandra Deliard; Jianhua Zhao; Qianghua Xia; Struan F. A. Grant