Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiangwei Wang is active.

Publication


Featured researches published by Qiangwei Wang.


Aquatic Toxicology | 2013

Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae

Chunsheng Liu; Qiangwei Wang; Kang Liang; Jingfu Liu; Bingsheng Zhou; Xiaowei Zhang; Hongling Liu; John P. Giesy; Hongxia Yu

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC(50)) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in the six receptor-centered gene networks in zebrafish embryos/larvae, and TDCPP seemed to have higher potency in changing the mRNA expression of these genes.


Aquatic Toxicology | 2015

Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro 2-propyl phosphate (TDCPP) to zebrafish

Qiangwei Wang; James C.W. Lam; Yin-Chung Man; Nelson Lok-Shun Lai; Karen Ying Kwok; Yong yong Guo; Paul K.S. Lam; Bingsheng Zhou

Organophosphate flame retardants are ubiquitous environmental contaminants; however, knowledge is limited regarding their environmental health risks and toxicity. Here, we investigated the effects of acute and long-term exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCPP) to the nervous system of zebrafish. Zebrafish embryos (2 h post-fertilization) were exposed to TDCPP (0-100 μg/L) for 6 months up until sexual maturation. Concentrations of TDCPP and its metabolic product (bis(1,3-dichloro-2-propyl) phosphate, BDCPP) were measured in the tissues of 5 day post-fertilization (dpf) larvae. There was no effect on locomotion, acetylcholinesterase activity, levels of the neurotransmitters dopamine and serotonin, and expression of mRNAs and proteins related to central nervous system development (e.g., myelin basic protein, α1-tubulin) in any exposure group. However, in adult fish, reductions of dopamine and serotonin levels were detected in the brains of females but not males. Downregulation of nervous system development genes was observed in both the male and female brain tissues. TDCPP concentrations were measured in adult fish tissues including the brain, and greater levels were detected in females. Our results showed that females are more sensitive to TDCPP stress than males in terms of TDCPP-induced neurotoxicity. We demonstrate that long-term exposure to lower concentrations of TDCPP in fish can lead to neurotoxicity.


Journal of Hazardous Materials | 2015

Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae

Qi Fang; Xiongjie Shi; Liping Zhang; Qiangwei Wang; Xianfeng Wang; Yongyong Guo; Bingsheng Zhou

This study investigated the influence of titanium dioxide nanoparticles (n-TiO2) on the bioavailability, metabolism, and toxicity of pentachlorophenol (PCP) in fish. Zebrafish (Danio rerio) embryos or larvae (2-h post-fertilization) were exposed to PCP (0, 3, 10, and 30 μg/L) alone or in combination with n-TiO2 (0.1mg/L) until 6 days post-fertilization. Results showed that n-TiO2 treatment alone did not induce lipid peroxidation, DNA damage, as well as the generation of reactive oxygen species (ROS) in the larvae. As compared with PCP treatment, the co-exposure of PCP and n-TiO2 enhanced the induction of ROS generation, eventually leading to lipid peroxidation and DNA damage. The nuclear factor erythroid 2-related factor 2 gene transcriptions were significantly upregulated in both PCP treatment alone and in combination with n-TiO2. Chemical analysis and histological examination showed that n-TiO2 adsorb PCP, and n-TiO2 are taken up by developing zebrafish larvae; however, PCP content was not enhanced in the presence of n-TiO2, but the metabolism of PCP to tetrachlorohydroquinone was enhanced in larvae. The results indicate that n-TiO2 enhanced the metabolism of PCP and caused oxidative damage and developmental toxicity, suggesting that NPs can influence the fate and toxicity of associated organic pollutants in the aquatic environment.


Aquatic Toxicology | 2015

Developmental exposure to the organophosphorus flame retardant tris(1,3-dichloro-2-propyl) phosphate: Estrogenic activity, endocrine disruption and reproductive effects on zebrafish

Qiangwei Wang; James C.W. Lam; Jian Han; Xianfeng Wang; Yongyong Guo; Paul K.S. Lam; Bingsheng Zhou

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant that is detectable in the environment and biota, prompting concern over its risk to wildlife and human health. Our objective was to investigate whether long-term exposure to low concentrations of TDCPP can affect fish reproduction. Zebrafish embryos were exposed to low concentrations (0, 4, 20 and 100μg/L) of TDCPP from 2h post-fertilization until sexual maturation. Exposure to TDCPP significantly increased plasma estradiol and testosterone levels in females, but had no effect in males. TDCPP exposure also caused a significant reduction in fecundity as indicated by decreased egg production. Real-time PCR was performed to examine selected genes in the hypothalamic-pituitary-gonadal (HPG) axis and liver. Principle component analysis (PCA) showed that sex hormone levels and fecundity were related to the mRNA level of several genes in the HPG axis. Furthermore, hepatic vitellogenin (vtg1 and vtg3) expression was upregulated in both females and males, suggesting TDCPP has estrogenic activity. Histological examination revealed promotion of oocyte maturation in the females, but retardation of spermiation in males. Reduced egg quality (e.g., egg diameter) and increased malformation rates were observed in the F1 generation. Chemical analysis showed significant levels of TDCPP and its metabolite bis(1,3-dichloro-2-propyl) phosphate in the gonads of males and females. In conclusion, long-term exposure to low concentrations of TDCPP impairs fish reproduction.


Nanotoxicology | 2014

Bioconcentration and metabolism of BDE-209 in the presence of titanium dioxide nanoparticles and impact on the thyroid endocrine system and neuronal development in zebrafish larvae

Qiangwei Wang; Qi Chen; Peng Zhou; Wenwen Li; Junxia Wang; Changjiang Huang; Xianfeng Wang; Kuangfei Lin; Bingsheng Zhou

Abstract Interactions between organic toxicants and nanoparticles (NPs) in the aquatic environment may modify toxicant bioavailability and consequently the toxicant’s environmental fate and toxicity. Therefore, we investigated the influence of titanium dioxide NPs (nano-TiO2) on deca-BDE (BDE-209; a polybrominated diphenyl ether congener) bioconcentration, metabolism and its effects on the thyroid endocrine system in zebrafish (Danio rerio) larvae. Zebrafish embryos were exposed to various concentrations of BDE-209 alone or in combination with nano-TiO2 (0.1 mg/L) until 7-day post-fertilization. Nano-TiO2 can adsorb BDE-209 and nano-TiO2 is taken up into developing zebrafish larvae. Chemical measurements showed that BDE-209 was bioconcentrated and metabolized in zebrafish larvae, and BDE-209 uptake was enhanced by nano-TiO2. Furthermore, increased BDE-209 metabolites were detected in larvae co-exposed with nano-TiO2. BDE-209 exposure significantly increased whole-body thyroid hormone contents (T3 and T4); T4 content significantly increased in the larvae co-exposed with nano-TiO2. Nano-TiO2 exposure alone did not induce generation of reactive oxygen species, lipid peroxidative oxidation, gene transcription or thyroid hormone levels. Upregulation of several gene transcriptions (tshβ, tg, dio2) in the hypothalamic–pituitary–thyroid axis was also observed. Furthermore, co-exposure of nano-TiO2 and BDE-209 caused a decrease in locomotion activity and downregulation of specific genes and proteins involved in the central nervous system of developing zebrafish larvae (e.g. myelin basic protein and α1-tubulin). These results indicate nano-TiO2 enhances BDE-209 bioavailability and metabolism, leading to thyroid endocrine disruption and developmental neurotoxicity in zebrafish.


Aquatic Toxicology | 2014

The synthetic progestin megestrol acetate adversely affects zebrafish reproduction

Jian Han; Qiangwei Wang; Xianfeng Wang; Yonggang Li; Sheng Wen; Shan Liu; Guang-Guo Ying; Yongyong Guo; Bingsheng Zhou

Synthetic progestins contaminate the aquatic ecosystem, and may cause adverse health effects on aquatic organisms. Megestrol acetate (MTA) is present in the aquatic environment, but its possible effects on fish reproduction are unknown. In the present study, we investigated the endocrine disruption and impact of MTA on fish reproduction. After a pre-exposure period of 14 days, reproductively mature zebrafish (Danio rerio) (F0) were exposed to MTA at environmental concentrations (33, 100, 333, and 666 ng/L) for 21 days. Egg production was decreased in F0 fish exposed to MTA, with a significant decrease at 666 ng/L. The exposure significantly decreased the circulating concentrations of estradiol (E2) and testosterone (T) in female fish or 11-keto testosterone (11-KT) in male fish. MTA exposure significantly downregulated the transcription of certain genes along the hypothalamic-pituitary-gonadal (HPG) axis. MTA did not affect early embryonic development or hatching success in the F1 generation. The present study showed that MTA is a potent endocrine disruptor in fish, and short-term exposure to MTA could significantly affect reproduction in fish and negatively impact the fish population.


Aquatic Toxicology | 2014

Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris(2-butoxyethyl) phosphate

Zhihua Han; Qiangwei Wang; Jie Fu; Hongshan Chen; Ye Zhao; Bingsheng Zhou; Zhiyuan Gong; Si Wei; Jun Li; Hongling Liu; Xiaowei Zhang; Chunsheng Liu; Hongxia Yu

The flame retardant tris(2-butoxyethyl) phosphate (TBEP) is a frequently detected contaminant in the environment, wildlife and human milk. The potentially toxic effects of TBEP and their underlying molecular mechanisms have not been elucidated. Here, zebrafish embryos were exposed to different concentrations of TBEP from 4 hours of post-fertilization (hpf) to 120 hpf, and effects on embryonic development and global protein expression patterns examined. Our results demonstrate that treatment with TBEP (0.8-100mg/L) causes a concentration- and time-dependent decrease in embryonic survival and the hatching percentage. The median lethal concentration was 10.7 mg/L at 120 hpf. Furthermore, exposure to 150 or 800 μg/L TBEP inhibited the degradation and utilization of vitellogenins and down-regulated the expression of proteins related to cation binding, and lipid transport, uptake and metabolism, accompanied by a decrease in heart rate and body length. Exposure to TBEP (150 or 800 μg/L) also decreased the expression of proteins involved in cell proliferation and DNA repair, and led to an increased number of apoptotic cells in the tail region. Collectively, our results suggest that exposure to TBEP causes toxicity in the developing zebrafish by inhibiting the degradation and utilization of nutrients from the mother and inducing apoptosis.


Aquatic Toxicology | 2012

Alterations in retinoid status after long-term exposure to PBDEs in zebrafish (Danio rerio)

Lianguo Chen; Chenyan Hu; Changjiang Huang; Qiangwei Wang; Xiaofang Wang; Lihua Yang; Bingsheng Zhou

This study examined the disruptive effect of exposure to polybrominated diphenyl ethers (PBDEs) on retinoid content in zebrafish (Danio rerio). Adult zebrafish were exposed to an environmentally relevant concentration (0.45 μg/L) and a higher concentration (9.6 μg/L) of DE-71 for 60 days. Retinoid content and gene transcription levels were examined in female zebrafish. PBDE exposure caused a significant decrease of retinyl ester content in the intestine and a downregulation of intestinal cellular retinol binding protein gene transcription (CRBP1a). In the liver, retinyl ester content was significantly decreased, while retinol content was increased. An upregulation of liver CRBP2a and retinol binding protein (RBP) gene transcription and an increased level of RBP protein were observed. In the eyes, both the retinal and retinyl ester content were increased and CRBP1a gene transcription was upregulated. However, the gene encoding for retinal dehydrogenase (RALDH2), responsible for retinoic acid synthesis, was downregulated in the eyes. CYP26a, the gene responsible for retinoic acid degradation, was upregulated, which indicated an increased level of retinoic acid. In the ovaries, the increased deposition of retinoids was also observed, while gene transcription levels of both CRBPs (CRBP1a and CRBP1b) were upregulated. An increased deposition of retinal was measured in the eggs. Overall, this study demonstrated that long-term exposure of zebrafish to environmentally relevant concentrations of DE-71 disrupted the transport, storage and metabolism of retinoid in various tissues. This study also indicated that retinoid levels in zebrafish are sensitive to PBDE exposure and highlighted the importance of liver storage, which appears to support important functions in reproduction and vision.


Environmental Toxicology and Chemistry | 2015

The developmental neurotoxicity of polybrominated diphenyl ethers: Effect of DE-71 on dopamine in zebrafish larvae.

Xianfeng Wang; Lihua Yang; Yuanyuan Wu; Changjiang Huang; Qiangwei Wang; Jian Han; Yongyong Guo; Xiongjie Shi; Bingsheng Zhou

The potential neurotoxicity of polybrominated diphenyl ethers (PBDEs) is still a great concern. In the present study, the authors investigated whether exposure to PBDEs could affect the neurotransmitter system and cause developmental neurotoxicity in zebrafish. Zebrafish embryos (2 h postfertilization) were exposed to different concentrations of the PBDE mixture DE-71 (0-100 μg/L). The larvae were harvested at 120 h postfertilization, and the impact on dopaminergic signaling was investigated. The results revealed significant reductions in content of whole-body dopamine and its metabolite, dihydroxyphenylacetic acid, in DE-71-exposed larvae. The transcription of genes involved in the development of dopaminergic neurons (e.g., manf, bdnf, and nr4a2b) was significantly downregulated upon exposure to DE-71. Also, DE-71 resulted in a significant decrease of tyrosine hydroxylase and dopamine transporter protein levels in dopaminergic neurons. The expression level of tyrosine hydroxylase in forebrain neurons was assessed by whole-mount immunofluorescence, and the results further demonstrated that the tyrosine hydroxylase protein expression level was reduced in dopaminergic neurons. In addition to these molecular changes, the authors observed reduced locomotor activity in DE-71-exposed larvae. Taken together, the results of the present study demonstrate that acute exposure to PBDEs can affect dopaminergic signaling by disrupting the synthesis and transportation of dopamine in zebrafish, thereby disrupting normal neurodevelopment. In accord with its experimental findings, the present study extends knowledge of the mechanisms governing PBDE-induced developmental neurotoxicity.


Chemosphere | 2016

Effect of combined exposure to lead and decabromodiphenyl ether on neurodevelopment of zebrafish larvae.

Biran Zhu; Qiangwei Wang; Xiongjie Shi; Yongyong Guo; Tao Xu; Bingsheng Zhou

The effect of combined exposure to decabromodiphenyl ether (BDE-209) and lead (Pb) on neurodevelopment of zebrafish (Danio rerio) larvae was investigated. Zebrafish embryos were exposed to Pb (0, 5, 10, 20 µg/L) and BDE-209 (0, 50, 100, 200 µg/L), either alone or in combination (Mix1: 5 + 50 µg/L, Mix2: 10 + 100 µg/L, Mix3: 20 + 200 µg/L) for up to 144 h post-fertilization. Growth of secondary motoneuron axons and expression of genes related to central nervous system development was significantly inhibited in Mix3 co-exposure group. A significant increase in reactive oxygen species (ROS), lipid peroxidation, DNA damage, and perturbation of the antioxidant system was detected in the Mix3 group compared to single-toxicant treatments or control. Depressed locomotor activity was recorded in the Mix2 and Mix3 groups. Addition of N-acetyl cysteine to Mix3 eliminated excessive ROS, and protected against lipid peroxidation, DNA damage, and locomotor dysfunction. Pb uptake was increased in the presence of BDE-209, but BDE-209 bioconcentration and the ability to metabolize BDE-209 were decreased in the presence of Pb. These results suggest that BDE-209 and Pb have a synergistic disruptive effect on neurodevelopment in zebrafish larvae by enhanced generation of ROS, which is a major factor that contributes to developmental neurotoxicity.

Collaboration


Dive into the Qiangwei Wang's collaboration.

Top Co-Authors

Avatar

Bingsheng Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongyong Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianfeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunsheng Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lihua Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lianguo Chen

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Paul K.S. Lam

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge