Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qianhong Li is active.

Publication


Featured researches published by Qianhong Li.


Circulation | 2010

Cardioprotective and Antiapoptotic Effects of Heme Oxygenase-1 in the Failing Heart

Guangwu Wang; Tariq Hamid; Rachel Keith; Guihua Zhou; Charles R. Partridge; Xilin Xiang; Justin R Kingery; Robert K. Lewis; Qianhong Li; D. Gregg Rokosh; Rachael L. Ford; Francis G. Spinale; Daniel W. Riggs; Sanjay Srivastava; Aruni Bhatnagar; Roberto Bolli; Sumanth D. Prabhu

Background— Heme oxygenase-1 (HO-1) is an inducible stress-response protein that imparts antioxidant and antiapoptotic effects. However, its pathophysiological role in cardiac remodeling and chronic heart failure (HF) is unknown. We hypothesized that induction of HO-1 in HF alleviates pathological remodeling. Methods and Results— Adult male nontransgenic and myocyte-restricted HO-1 transgenic mice underwent either sham operation or coronary ligation to induce HF. Four weeks after ligation, nontransgenic HF mice exhibited postinfarction left ventricular (LV) remodeling and dysfunction, hypertrophy, fibrosis, oxidative stress, apoptosis, and reduced capillary density, associated with a 2-fold increase in HO-1 expression in noninfarcted myocardium. Compared with nontransgenic mice, HO-1 transgenic HF mice exhibited significantly (P<0.05) improved postinfarction survival (94% versus 57%) and less LV dilatation (end-diastolic volume, 46±8 versus 85±32 &mgr;L), mechanical dysfunction (ejection fraction, 65±9% versus 49±16%), hypertrophy (LV/tibia length 4.4±0.4 versus 5.2±0.6 mg/mm), interstitial fibrosis (11.2±3.1% versus 18.5±3.5%), and oxidative stress (3-fold reduction in tissue malondialdehyde). Moreover, myocyte-specific HO-1 overexpression in HF promoted tissue neovascularization and ameliorated myocardial p53 expression (2-fold reduction) and apoptosis. In isolated mitochondria, mitochondrial permeability transition was inhibited by HO-1 in a carbon monoxide (CO)–dependent manner and was recapitulated by the CO donor tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). HO-1–derived CO also prevented H2O2-induced cardiomyocyte apoptosis and cell death. Finally, in vivo treatment with CORM-3 alleviated postinfarction LV remodeling, p53 expression, and apoptosis. Conclusions— HO-1 induction in the failing heart is an important cardioprotective adaptation that opposes pathological LV remodeling, and this effect is mediated, at least in part, by CO-dependent inhibition of mitochondrial permeability transition and apoptosis. Augmentation of HO-1 or its product, CO, may represent a novel therapeutic strategy for ameliorating HF.


Circulation | 2001

Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction

Qianhong Li; Roberto Bolli; Yumin Qiu; Xian Liang Tang; Yiru Guo; Brent A. French

BackgroundExtracellular superoxide dismutase (Ec-SOD) may protect the heart against myocardial infarction (MI) because of its extended half-life and capacity to bind heparan sulfate proteoglycans on cellular surfaces. Accordingly, we used direct gene transfer to increase systemic levels of Ec-SOD and determined whether this gene therapy could protect against MI. Methods and ResultsThe cDNA for human Ec-SOD was incorporated into a replication-deficient adenovirus (Ad5/CMV/Ec-SOD). Injection of this virus produced a high level of Ec-SOD in the liver, which was redistributed to the heart and other organs by injection of heparin. Untreated rabbits (group I) underwent a 30-minute coronary occlusion and 3 days of reperfusion. For comparison, preconditioned rabbits (group II) underwent a sequence of six 4-minute-occlusion/4-minute-reperfusion cycles 24 hours before the 30-minute occlusion. Control-treated rabbits (group III) were injected intravenously with Ad5/CMV/nls-LacZ, and gene-therapy rabbits (group IV) were injected with Ad5/CMV/Ec-SOD 3 days before the 30-minute occlusion. Both groups treated with Ad5 received intravenous heparin 2 hours before the 30-minute occlusion. Infarct size (percent risk area) was similar in groups I (57±6%) and III (58±5%). Ec-SOD gene therapy markedly reduced infarct size to 25±4% (P <0.01, group IV versus group III), a protection comparable to that of the late phase of ischemic preconditioning (29±3%, P <0.01 group II versus group I). ConclusionsDirect gene transfer of the cDNA encoding membrane-bound Ec-SOD affords powerful cardioprotection, providing proof of principle for the effectiveness of antioxidant gene therapy against MI.


Circulation Research | 2003

Gene Therapy With Inducible Nitric Oxide Synthase Protects Against Myocardial Infarction via a Cyclooxygenase-2–Dependent Mechanism

Qianhong Li; Yiru Guo; Yu-Ting Xuan; Charles J. Lowenstein; Susan C. Stevenson; Sumanth D. Prabhu; Wen Jian Wu; Yanqing Zhu; Roberto Bolli

&NA; —Although the inducible isoform of NO synthase (iNOS) mediates late preconditioning (PC), it is unknown whether iNOS gene transfer can replicate the cardioprotective effects of late PC, and the role of this protein in myocardial ischemia is controversial. Thus, the cDNA for human iNOS was cloned behind the Rous sarcoma virus (RSV) promoter to create adenovirus (Ad) 5/iNOS lacking E1, E2a, and E3 regions. Intramyocardial injection of Ad5/iNOS in mice increased local iNOS protein expression and activity and markedly reduced infarct size. The infarct‐sparing effects of Ad5/iNOS were at least as powerful as those of ischemic PC. The increased iNOS expression was associated with increased cyclooxygenase‐2 (COX‐2) protein expression and prostanoid levels. Pretreatment with the COX‐2‐selective inhibitor NS‐398 completely abrogated the infarct‐sparing actions of Ad5/iNOS, demonstrating that COX‐2 is an obligatory downstream effector of iNOS‐dependent cardioprotection. We conclude that gene transfer of iNOS (an enzyme commonly thought to be detrimental) affords powerful cardioprotection the magnitude of which is equivalent to that of late PC. This is the first report that upregulation of iNOS, in itself, is sufficient to reduce infarct size. The results provide proof‐of‐principle for gene therapy against ischemia/reperfusion injury, which increases local myocardial NO synthase levels without the need for continuous intravenous infusion of NO donors and without altering systemic hemodynamics. The data also reveal the existence of a close coupling between iNOS and COX‐2, whereby induction of the former enzyme leads to secondary induction of the latter, which in turn mediates the cytoprotective effects of iNOS. We propose that iNOS and COX‐2 form a stress‐responsive functional module that mitigates ischemia/reperfusion injury. (Circ Res. 2003;92:741–748.)


Circulation | 1998

Gene Therapy With Extracellular Superoxide Dismutase Attenuates Myocardial Stunning in Conscious Rabbits

Qianhong Li; Roberto Bolli; Yumin Qiu; Xian Liang Tang; Sidney S. Murphree; Brent A. French

BACKGROUND Administration of Cu/Zn superoxide dismutase (SOD) without catalase fails to alleviate myocardial stunning, but extracellular SOD (Ec-SOD) may be more effective because it binds to heparan sulfate proteoglycans on the cellular glycocalyx. We therefore used in vivo gene transfer to increase systemic levels of Ec-SOD and determined whether this gene therapy protects against myocardial stunning. METHODS AND RESULTS The cDNA for human Ec-SOD was cloned behind the cytomegalovirus (CMV) promoter and incorporated into a replication-deficient adenovirus (Ad5/CMV/Ec-SOD). Injection of this virus (2x10(8) pfu/kg IV) produced high levels of Ec-SOD in the liver, which could be redistributed to the heart and other organs by injection of heparin. Conscious rabbits underwent a sequence of six 4-minute coronary occlusion/4-minute reperfusion cycles for 3 consecutive days starting 3 days after intravenous injection of Ad5/CMV/Ec-SOD or Ad5/CMV/nls/LacZ (negative control). Both groups were given heparin (2000 U/kg IV) 2 hours before the first sequence of occlusions. The severity of myocardial stunning was measured as the total deficit of LV wall thickening after the last reperfusion. On day 1, the total deficit of wall thickening was markedly decreased in Ad5/CMV/Ec-SOD rabbits versus controls and similar to that seen on days 2 and 3 in controls. CONCLUSIONS The results demonstrate that in vivo gene transfer of the cDNA encoding Ec-SOD provides the heart with substantial protection against myocardial stunning without the need for concomitant administration of catalase. The present observations provide the basis for controlling gene therapy at the posttranslational level and for simultaneously protecting multiple organs from oxidant stress.


Circulation Research | 2016

Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year.

Xian Liang Tang; Qianhong Li; Gregg Rokosh; Santosh K. Sanganalmath; Ning Chen; Qinghui Ou; Heather Stowers; Greg Hunt; Roberto Bolli

Rationale:Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. Objective:To assess the outcome of CPC therapy at 1 year. Methods and Results:Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosomePOS) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4–8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative res...RATIONALE Cardiac progenitor cells (CPCs) improve left ventricular remodeling and function after acute or chronic myocardial infarction. However, the long-term (>5 weeks) effects, potential tumorigenicity, and fate of transplanted CPCs are unknown. OBJECTIVE To assess the outcome of CPC therapy at 1 year. METHODS AND RESULTS Female rats underwent a 90-minute coronary occlusion; 4 hours after reperfusion, they received intracoronarily vehicle or 1 million male, syngeneic CPCs. One year later, CPC-treated rats exhibited smaller scars and more viable myocardium in the risk region, along with improved left ventricular remodeling and regional and global left ventricular function. No tumors were observed. Some transplanted (Y-chromosome(POS)) CPCs (or their progeny) persisted and continued to proliferate, but they failed to acquire a mature cardiomyocyte phenotype and were too few (4-8% of nuclei) to account for the benefits of CPC therapy. Surprisingly, CPC transplantation triggered a prolonged proliferative response of endogenous cells, resulting in increased formation of endothelial cells and Y-chromosome(NEG) CPCs for 12 months and increased formation, for at least 7 months, of small cells that expressed cardiomyocytic proteins (α-sarcomeric actin) but did not have a mature cardiomyocyte phenotype. CONCLUSIONS The beneficial effects of CPCs on left ventricular remodeling and dysfunction are sustained for at least 1 year and thus are likely to be permanent. Because transplanted CPCs do not differentiate into mature myocytes, their major mechanism of action must involve paracrine actions. These paracrine mechanisms could be very prolonged because some CPCs engraft, proliferate, and persist at 1 year. This is the first report that transplantation of any cell type in the heart induces a proliferative response that lasts at least 1 year. The results strongly support the safety and clinical utility of CPC therapy.


Circulation | 2008

Noncanonical Wnt11 Signaling Is Sufficient to Induce Cardiomyogenic Differentiation in Unfractionated Bone Marrow Mononuclear Cells

Michael P. Flaherty; Ahmed Abdel-Latif; Qianhong Li; Greg Hunt; Smita Ranjan; Qinghu Ou; Xian-Liang Tang; Robin K. Johnson; Roberto Bolli; Buddhadeb Dawn

Background— Despite the frequent clinical use of adult unfractionated bone marrow mononuclear cells (BMMNCs) for cardiac repair, whether these cells are capable of undergoing cardiomyogenic differentiation in vitro remains uncertain. In addition, the role of Wnt signaling in cardiomyogenic differentiation of adult cells is unclear. Methods and Results— Unfractionated BMMNCs were isolated from adult mice via Ficoll-Paque density-gradient centrifugation and cultured in the presence of Wnt3a or Wnt11. In control BMMNCs, Wnt11 was not expressed, whereas the expression of markers of pluripotency (Oct-4 and Nanog), as well as that of Wnt3a and β-catenin, decreased progressively during culture. Exposure to Wnt3a rescued β-catenin expression and markedly increased the expression of Oct-4 and Nanog, concomitant with increased cell proliferation and CD45 expression. In contrast, exposure to ectopically expressed noncanonical Wnt11 markedly decreased the expression of Oct-4 and Nanog and induced mRNA expression (quantitative real-time reverse-transcription polymerase chain reaction) of cardiac-specific genes (Nkx2.5, GATA-4, atrial natriuretic peptide, α- and β-myosin heavy chain, and cardiac troponin T) by day 3 with subsequent progression to a pattern characteristic of the cardiac fetal gene program. After 21 days, 27.6±0.6% and 29.6±1.4% of BMMNCs expressed the cardiac-specific antigens cardiac myosin heavy chain and cardiac troponin T, respectively (immunocytochemistry), indicating cardiomyogenic lineage commitment. Wnt11-induced cardiac-specific expression was completely abolished by the protein kinase C inhibitor bisindolylmaleimide I, partially abolished by the c-Jun-N-terminal kinase inhibitor SP600125, and attenuated by the Wnt inhibitor Dickkopf-1. Conclusions— In adult density-gradient separated BMMNCs, canonical Wnt3a promotes stemness, proliferation, and hematopoietic commitment, whereas noncanonical signaling via Wnt11 induces robust cardiomyogenic differentiation in a protein kinase C– and c-Jun-N-terminal kinase–dependent manner.


Circulation Research | 2015

The NHLBI-Sponsored Consortium for preclinicAl assESsment of cARdioprotective Therapies (CAESAR): A New Paradigm for Rigorous, Accurate, and Reproducible Evaluation of Putative Infarct-Sparing Interventions in Mice, Rabbits, and Pigs

Steven P. Jones; Xian Liang Tang; Yiru Guo; Charles Steenbergen; David J. Lefer; Rakesh C. Kukreja; Maiying Kong; Qianhong Li; Shashi Bhushan; Xiaoping Zhu; Junjie Du; Yibing Nong; Heather Stowers; Kazuhisa Kondo; Gregory N. Hunt; Traci Goodchild; Adam Orr; Carlos Chang; Ramzi Ockaili; Fadi N. Salloum; Roberto Bolli

Rationale: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. Objective: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. Methods and Results: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22–25 per group), rabbits (n=11–12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR’s operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center—all with the oversight of an external Protocol Review and Monitoring Committee. Conclusions: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols (“CAESAR protocols”) for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible. # Novelty and Significance {#article-title-41}Rationale: Despite 4 decades of intense effort and substantial financial investment, the cardioprotection field has failed to deliver a single drug that effectively reduces myocardial infarct size in patients. A major reason is insufficient rigor and reproducibility in preclinical studies. Objective: To develop a multicenter, randomized, controlled, clinical trial-like infrastructure to conduct rigorous and reproducible preclinical evaluation of cardioprotective therapies. Methods and Results: With support from the National Heart, Lung, and Blood Institute, we established the Consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR), based on the principles of randomization, investigator blinding, a priori sample size determination and exclusion criteria, appropriate statistical analyses, and assessment of reproducibility. To validate CAESAR, we tested the ability of ischemic preconditioning to reduce infarct size in 3 species (at 2 sites/species): mice (n=22–25 per group), rabbits (n=11–12 per group), and pigs (n=13 per group). During this validation phase, (1) we established protocols that gave similar results between centers and confirmed that ischemic preconditioning significantly reduced infarct size in all species and (2) we successfully established a multicenter structure to support CAESAR’s operations, including 2 surgical centers for each species, a Pathology Core (to assess infarct size), a Biomarker Core (to measure plasma cardiac troponin levels), and a Data Coordinating Center—all with the oversight of an external Protocol Review and Monitoring Committee. Conclusions: CAESAR is operational, generates reproducible results, can detect cardioprotection, and provides a mechanism for assessing potential infarct-sparing therapies with a level of rigor analogous to multicenter, randomized, controlled clinical trials. This is a revolutionary new approach to cardioprotection. Importantly, we provide state-of-the-art, detailed protocols (“CAESAR protocols”) for measuring infarct size in mice, rabbits, and pigs in a manner that is rigorous, accurate, and reproducible.


Circulation | 2007

Cardioprotection Afforded by Inducible Nitric Oxide Synthase Gene Therapy Is Mediated by Cyclooxygenase-2 via a Nuclear Factor-κB–Dependent Pathway

Qianhong Li; Yiru Guo; Wei Tan; Qinghui Ou; Wen-Jian Wu; Diana Sturza; Buddhadeb Dawn; Greg Hunt; Chuanjue Cui; Roberto Bolli

Background— Gene therapy with inducible nitric oxide synthase (iNOS) markedly reduces myocardial infarct size; this effect is associated with cyclooxygenase-2 (COX-2) upregulation and is ablated by COX-2 inhibitors. However, pharmacological inhibitors are limited by relative lack of specificity; furthermore, the mechanism whereby iNOS gene therapy upregulates COX-2 remains unknown. Accordingly, we used genetically engineered mice to test the hypothesis that the cardioprotection afforded by iNOS gene transfer is mediated by COX-2 upregulation via a nuclear factor (NF)-&kgr;B-dependent pathway. Methods and Results— Mice received an intramyocardial injection of Av3/LacZ (LacZ group) or Av3/iNOS (iNOS group); 3 days later, myocardial infarction was produced by a 30-minute coronary occlusion followed by 4 hours of reperfusion. Among Av3/LacZ-treated mice, infarct size was similar in COX-2−/− and wild-type groups. iNOS gene transfer (confirmed by iNOS immunoblotting and activity assays) markedly reduced infarct size in wild-type mice but failed to do so in COX-2−/− mice. In transgenic mice with cardiac-specific expression of a dominant-negative mutant of I&kgr;B&agr; (I&kgr;B&agr;S32A,S36A), the upregulation of phosphorylated I&kgr;B&agr;, activation of NF-&kgr;B, and cardiac COX-2 protein expression 3 days after iNOS gene therapy were abrogated, which was associated with the abolishment of the cardioprotective effects afforded by iNOS gene therapy. Conclusions— These data provide strong genetic evidence that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection and that NF-&kgr;B is a critical link between iNOS and COX-2. Thus, iNOS imparts its protective effects, at least in part, by recruiting NF-&kgr;B, leading to COX-2 upregulation. However, COX-2 does not play an important cardioprotective role under basal conditions (when iNOS is not upregulated).


Circulation | 2009

Gene Transfer of Inducible Nitric Oxide Synthase Affords Cardioprotection by Upregulating Heme Oxygenase-1 Via a Nuclear Factor-κB-Dependent Pathway

Qianhong Li; Yiru Guo; Qinghui Ou; Chuanjue Cui; Wen-Jian Wu; Wei Tan; Xiaoping Zhu; Lilibeth B. Lanceta; Santosh K. Sanganalmath; Buddhadeb Dawn; Ken Shinmura; Gregg Rokosh; Shuyan Wang; Roberto Bolli

Background— Although inducible nitric oxide synthase (iNOS) is known to impart powerful protection against myocardial infarction, the mechanism for this salubrious action remains unclear. Methods and Results— Adenovirus-mediated iNOS gene transfer in mice resulted 48 to 72 hours later in increased expression not only of iNOS protein but also of heme oxygenase (HO)-1 mRNA and protein; HO-2 protein expression did not change. iNOS gene transfer markedly reduced infarct size in wild-type mice, but this effect was completely abrogated in HO-1−/− mice. At 48 hours after iNOS gene transfer, nuclear factor-&kgr;B was markedly activated. In transgenic mice with cardiomyocyte-restricted expression of a dominant negative mutant of I&kgr;Bα (I&kgr;BαS32A,S36A), both basal HO-1 levels and upregulation of HO-1 by iNOS gene transfer were suppressed. Chromatin immunoprecipitation analysis of mouse hearts provided direct evidence that nuclear factor-&kgr;B subunits p50 and p65 were recruited to the HO-1 gene promoter (−468 to −459 bp) 48 hours after iNOS gene transfer. Conclusions— This study demonstrates for the first time the existence of a close functional coupling between cardiac iNOS and cardiac HO-1: iNOS upregulates HO-1 by augmenting nuclear factor-&kgr;B binding to the region of the HO-1 gene promoter from −468 to −459 bp, and HO-1 then mediates the cardioprotective effects of iNOS. These results also reveal an important role of nuclear factor-&kgr;B in both basal and iNOS-induced expression of cardiac HO-1. Collectively, the present findings significantly expand our understanding of the regulation of cardiac HO-1 and of the mechanism whereby iNOS exerts its cardioprotective actions.


Circulation Research | 2016

Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy

Yukichi Tokita; Xian Liang Tang; Qianhong Li; Marcin Wysoczynski; Kyung U. Hong; Roberto Bolli; Shunichi Nakamura; Wen Jian Wu; Wei Xie; Ding Li; Greg Hunt; Qinghui Ou; Heather Stowers

RATIONALE The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.

Collaboration


Dive into the Qianhong Li's collaboration.

Top Co-Authors

Avatar

Roberto Bolli

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Yiru Guo

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Xiaoping Zhu

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Wen-Jian Wu

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Qinghui Ou

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Wei Tan

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge