Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qianjin Feng is active.

Publication


Featured researches published by Qianjin Feng.


Medical Physics | 2011

Low‐dose computed tomography image restoration using previous normal‐dose scan

Jianhua Ma; Jing Huang; Qianjin Feng; Hongbing Lu; Zhengrong Liang; Wufan Chen

PURPOSE In current computed tomography (CT) examinations, the associated x-ray radiation dose is of a significant concern to patients and operators. A simple and cost-effective means to perform the examinations is to lower the milliampere-seconds (mAs) or kVp parameter (or delivering less x-ray energy to the body) as low as reasonably achievable in data acquisition. However, lowering the mAs parameter will unavoidably increase data noise and the noise would propagate into the CT image if no adequate noise control is applied during image reconstruction. Since a normal-dose high diagnostic CT image scanned previously may be available in some clinical applications, such as CT perfusion imaging and CT angiography (CTA), this paper presents an innovative way to utilize the normal-dose scan as a priori information to induce signal restoration of the current low-dose CT image series. METHODS Unlike conventional local operations on neighboring image voxels, nonlocal means (NLM) algorithm utilizes the redundancy of information across the whole image. This paper adapts the NLM to utilize the redundancy of information in the previous normal-dose scan and further exploits ways to optimize the nonlocal weights for low-dose image restoration in the NLM framework. The resulting algorithm is called the previous normal-dose scan induced nonlocal means (ndiNLM). Because of the optimized nature of nonlocal weights calculation, the ndiNLM algorithm does not depend heavily on image registration between the current low-dose and the previous normal-dose CT scans. Furthermore, the smoothing parameter involved in the ndiNLM algorithm can be adaptively estimated based on the image noise relationship between the current low-dose and the previous normal-dose scanning protocols. RESULTS Qualitative and quantitative evaluations were carried out on a physical phantom as well as clinical abdominal and brain perfusion CT scans in terms of accuracy and resolution properties. The gain by the use of the previous normal-dose scan via the presented ndiNLM algorithm is noticeable as compared to a similar approach without using the previous normal-dose scan. CONCLUSIONS For low-dose CT image restoration, the presented ndiNLM method is robust in preserving the spatial resolution and identifying the low-contrast structure. The authors can draw the conclusion that the presented ndiNLM algorithm may be useful for some clinical applications such as in perfusion imaging, radiotherapy, tumor surveillance, etc.


Journal of Mathematical Imaging and Vision | 2008

Nonlocal Prior Bayesian Tomographic Reconstruction

Yang Chen; Jianhua Ma; Qianjin Feng; Limin Luo; Pengcheng Shi; Wufan Chen

Abstract Bayesian approaches, or maximum a posteriori (MAP) methods, are effective in providing solutions to ill-posed problems in image reconstruction. Based on Bayesian theory, prior information of the target image is imposed on image reconstruction to suppress noise. Conventionally, the information in most of prior models comes from weighted differences between pixel intensities within a small local neighborhood. In this paper, we propose a novel nonlocal prior such that differences are computed over a broader neighborhoods of each pixel with weights depending on its similarity with respect to the other pixels. In such a way connectivity and continuity of the image is exploited. A two-step reconstruction algorithm using the nonlocal prior is developed. The proposed nonlocal prior Bayesian reconstruction algorithm has been applied to emission tomographic reconstructions using both computer simulated data and patient SPECT data. Compared to several existing reconstruction methods, our approach shows better performance in both lowering the noise and preserving the edges.


Medical Physics | 2010

Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

Qianjin Feng; Mark Foskey; Wufan Chen; Dinggang Shen

This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application.


Physics in Medicine and Biology | 2012

Learning image context for segmentation of the prostate in CT-guided radiotherapy

Wei Li; Shu Liao; Qianjin Feng; Wufan Chen; Dinggang Shen

Accurate segmentation of the prostate is the key to the success of external beam radiotherapy of prostate cancer. However, accurate segmentation of the prostate in computer tomography (CT) images remains challenging mainly due to three factors: (1) low image contrast between the prostate and its surrounding tissues, (2) unpredictable prostate motion across different treatment days and (3) large variations of intensities and shapes of the bladder and rectum around the prostate. In this paper, an online-learning and patient-specific classification method based on the location-adaptive image context is presented to deal with all these challenging issues and achieve the precise segmentation of the prostate in CT images. Specifically, two sets of location-adaptive classifiers are placed, respectively, along the two coordinate directions of the planning image space of a patient, and further trained with the planning image and also the previous-segmented treatment images of the same patient to jointly perform prostate segmentation for a new treatment image (of the same patient). In particular, each location-adaptive classifier, which itself consists of a set of sequential sub-classifiers, is recursively trained with both the static image appearance features and the iteratively updated image context features (extracted at different scales and orientations) for better identification of each prostate region. The proposed learning-based prostate segmentation method has been extensively evaluated on 161 images of 11 patients, each with more than nine daily treatment three-dimensional CT images. Our method achieves the mean Dice value 0.908 and the mean ± SD of average surface distance value 1.40 ± 0.57 mm. Its performance is also compared with three prostate segmentation methods, indicating the best segmentation accuracy by the proposed method among all methods under comparison.


IEEE Transactions on Biomedical Engineering | 2014

Brain Tumor Segmentation Based on Local Independent Projection-Based Classification

Meiyan Huang; Wei Yang; Yao Wu; Jun Jiang; Wufan Chen; Qianjin Feng

Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.


IEEE Transactions on Biomedical Engineering | 2014

Iterative Reconstruction for X-Ray Computed Tomography using Prior-Image Induced Nonlocal Regularization

Jing Huang; Jianhua Ma; Zhaoying Bian; Qianjin Feng; Hongbing Lu; Zhengrong Liang; Wufan Chen

Repeated X-ray computed tomography (CT) scans are often required in several specific applications such as perfusion imaging, image-guided biopsy needle, image-guided intervention, and radiotherapy with noticeable benefits. However, the associated cumulative radiation dose significantly increases as comparison with that used in the conventional CT scan, which has raised major concerns in patients. In this study, to realize radiation dose reduction by reducing the X-ray tube current and exposure time (mAs) in repeated CT scans, we propose a prior-image induced nonlocal (PINL) regularization for statistical iterative reconstruction via the penalized weighted least-squares (PWLS) criteria, which we refer to as “PWLS-PINL”. Specifically, the PINL regularization utilizes the redundant information in the prior image and the weighted least-squares term considers a data-dependent variance estimation, aiming to improve current low-dose image quality. Subsequently, a modified iterative successive overrelaxation algorithm is adopted to optimize the associative objective function. Experimental results on both phantom and patient data show that the present PWLS-PINL method can achieve promising gains over the other existing methods in terms of the noise reduction, low-contrast object detection, and edge detail preservation.


Computers in Biology and Medicine | 2011

Sparse angular CT reconstruction using non-local means based iterative-correction POCS

Jing Huang; Jianhua Ma; Nan Liu; Zhaoying Bian; Yanqiu Feng; Qianjin Feng; Wufan Chen

In divergent-beam computed tomography (CT), sparse angular sampling frequently leads to conspicuous streak artifacts. In this paper, we propose a novel non-local means (NL-means) based iterative-correction projection onto convex sets (POCS) algorithm, named as NLMIC-POCS, for effective and robust sparse angular CT reconstruction. The motivation for using NLMIC-POCS is that NL-means filtered image can produce an acceptable priori solution for sequential POCS iterative reconstruction. The NLMIC-POCS algorithm has been tested on simulated and real phantom data. The experimental results show that the presented NLMIC-POCS algorithm can significantly improve the image quality of the sparse angular CT reconstruction in suppressing streak artifacts and preserving the edges of the image.


Computerized Medical Imaging and Graphics | 2013

3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets

Jun Jiang; Yao Wu; Meiyan Huang; Wei Yang; Wufan Chen; Qianjin Feng

Brain tumor segmentation is a clinical requirement for brain tumor diagnosis and radiotherapy planning. Automating this process is a challenging task due to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this paper, we propose a method to construct a graph by learning the population- and patient-specific feature sets of multimodal magnetic resonance (MR) images and by utilizing the graph-cut to achieve a final segmentation. The probabilities of each pixel that belongs to the foreground (tumor) and the background are estimated by global and custom classifiers that are trained through learning population- and patient-specific feature sets, respectively. The proposed method is evaluated using 23 glioma image sequences, and the segmentation results are compared with other approaches. The encouraging evaluation results obtained, i.e., DSC (84.5%), Jaccard (74.1%), sensitivity (87.2%), and specificity (83.1%), show that the proposed method can effectively make use of both population- and patient-specific information.


Computerized Medical Imaging and Graphics | 2013

SR-NLM: A sinogram restoration induced non-local means image filtering for low-dose computed tomography

Zhaoying Bian; Jianhua Ma; Jing Huang; Shanzhou Niu; Qianjin Feng; Zhengrong Liang; Wufan Chen

Radiation dose has raised significant concerns to patients and operators in modern X-ray computed tomography (CT) examinations. A simple and cost-effective means to perform a low-dose CT scan is to lower the milliampere-seconds (mAs) as low as reasonably achievable in data acquisition. However, the associated image quality with lower-mAs scans (or low-dose scans) will be unavoidably degraded due to the excessive data noise, if no adequate noise control is applied during image reconstruction. For image reconstruction with low-dose scans, sinogram restoration algorithms based on modeling the noise properties of measurement can produce an image with noise-induced artifact suppression, but they often suffer noticeable resolution loss. As an alternative technique, the noise-reduction algorithms via edge-preserving image filtering can yield an image without noticeable resolution loss, but they often do not completely eliminate the noise-induced artifacts. With above observations, in this paper, we present a sinogram restoration induced non-local means (SR-NLM) image filtering algorithm to retain the CT image quality by fully considering the advantages of the sinogram restoration and image filtering algorithms in low-dose image reconstruction. Extensive experimental results show that the present SR-NLM algorithm outperforms the existing methods in terms of cross profile, noise reduction, contrast-to-ratio measure, noise-resolution tradeoff and receiver operating characteristic (ROC) curves.


IEEE Transactions on Medical Imaging | 2012

Hierarchical Patch-Based Sparse Representation—A New Approach for Resolution Enhancement of 4D-CT Lung Data

Yu Zhang; Guorong Wu; Pew Thian Yap; Qianjin Feng; J Lian; Wufan Chen; Dinggang Shen

Four-dimensional computed tomography (4D-CT) plays an important role in lung cancer treatment because of its capability in providing a comprehensive characterization of respiratory motion for high-precision radiation therapy. However, due to the inherent high-dose exposure associated with CT, dense sampling along superior–inferior direction is often not practical, thus resulting in an inter-slice thickness that is much greater than in-plane voxel resolutions. As a consequence, artifacts such as lung vessel discontinuity and partial volume effects are often observed in 4D-CT images, which may mislead dose administration in radiation therapy. In this paper, we present a novel patch-based technique for resolution enhancement of 4D-CT images along the superior–inferior direction. Our working premise is that anatomical information that is missing in one particular phase can be recovered from other phases. Based on this assumption, we employ a hierarchical patch-based sparse representation mechanism to enhance the superior–inferior resolution of 4D-CT by reconstructing additional intermediate CT slices. Specifically, for each spatial location on an intermediate CT slice that we intend to reconstruct, we first agglomerate a dictionary of patches from images of all other phases in the 4D-CT. We then employ a sparse combination of patches from this dictionary, with guidance from neighboring (upper and lower) slices, to reconstruct a series of patches, which we progressively refine in a hierarchical fashion to reconstruct the final intermediate slices with significantly enhanced anatomical details. Our method was extensively evaluated using a public dataset. In all experiments, our method outperforms the conventional linear and cubic-spline interpolation methods in preserving image details and also in suppressing misleading artifacts, indicating that our proposed method can potentially be applied to better image-guided radiation therapy of lung cancer in the future.

Collaboration


Dive into the Qianjin Feng's collaboration.

Top Co-Authors

Avatar

Wufan Chen

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Yang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jianhua Ma

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yanqiu Feng

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhentai Lu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Huang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhaoying Bian

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Lijun Lu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meiyan Huang

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge