Qianxi Wang
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qianxi Wang.
Physics of Fluids | 2016
Yunlong Liu; Qianxi Wang; S. P. Wang; A. M. Zhang
The numerical modelling of 3D toroidal bubble dynamics is a challenging problem due to the complex topological transition of the flow domain, and physical and numerical instabilities, associated with jet penetration through the bubble. In this paper, this phenomenon is modelled using the boundary integral method (BIM) coupled with a vortex ring model. We implement a new impact model consisting of the refined local mesh near the impact location immediately before and after impact, and a surgical cut at a high resolution forming a smooth hole for the transition from a singly connected to doubly connected form. This enables a smooth transition from a singly connected bubble to a toroidal bubble. The potential due to a vortex ring is reduced to the line integral along the vortex ring. A new mesh density control technique is described to update the bubble and free surfaces, which provides a high mesh quality of the surfaces with the mesh density in terms of the curvature distribution of the surface. The pressu...
Physics of Fluids | 2015
Qianxi Wang; Kawa Manmi; Michael L. Calvisi
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff’s model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh techniqu...
Physics of Fluids | 2017
Aman Zhang; W. B. Wu; Y. L. Liu; Qianxi Wang
The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.
Interface Focus | 2015
J. R. Blake; David Leppinen; Qianxi Wang
Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet.
Interface Focus | 2015
Qianxi Wang; Kawa Manmi; Kuo-Kang Liu
Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoffs model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed.
Ultrasonics Sonochemistry | 2017
Kawa Manmi; Qianxi Wang
Microbubble dynamics subject to ultrasound are associated with important applications in biomedical ultrasonics, sonochemistry and cavitation cleaning. The viscous effects in this phenomenon is essential since the Reynolds number Re associated is about O(10). The flow field is characterized as being an irrotational flow in the bulk volume but with a thin vorticity layer at the bubble surface. This paper investigates the phenomenon using the boundary integral method based on the viscous potential flow theory. The viscous effects are incorporated into the model through including the normal viscous stress of the irrotational flow in the dynamic boundary condition at the bubble surface. The viscous correction pressure of Joseph & Wang (2004) is implemented to resolve the discrepancy between the non-zero shear stress of the irrotational flow at a free surface and the physical boundary condition of zero shear stress. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble oscillating in a viscous liquid for several cycles of oscillation for Re=10. It correlates pretty closely with both the experimental data and the axisymmetric simulation based on the Navier-Stokes equations for transient bubble dynamics near a rigid boundary. We further analyze microbubble dynamics near a rigid boundary subject to ultrasound travelling perpendicular and parallel to the boundary, respectively, in parameter regions of clinical relevance. The viscous effects to acoustic microbubble dynamics are analyzed in terms of the jet velocity, bubble volume, centroid movement, Kelvin impulse and bubble energy.
Physics of Fluids | 2016
Yunqiao Liu; Qianxi Wang
The dynamics of encapsulated microbubbles (EMBs) subject to an ultrasound wave have wide and important medical applications, including sonography, drug delivery, and sonoporation. The nonspherical shape oscillation of an EMB, termed as shape modes, is one of the core mechanisms of these applications and therefore its natural frequency is a fundamentally important parameter. Based on the linear stability theory, we show that shape modes of an EMB in a viscous Newtonian liquid are stable. We derive an explicit expression for the natural frequency of shape modes, in terms of the equilibrium radius of an EMB, and the parameters of the external liquid, coating, and internal gases. The expression is validated by comparing to the numerical results obtained from the dynamic equations of shape modes of an EMB. The natural frequency of shape modes shifts appreciably due to the viscosity of the liquid, and this trend increases with the mode number. The significant viscous effects are due to the no-slip condition for...
Physics of Fluids | 2017
Zhen Wang; Changhong Wu; Li Zou; Qianxi Wang; Qi Ding
This paper is concerned with the internal wave at the interface of two layers of liquids due to a hydrofoil in the lower layer liquid. The two-layer fluid is assumed moving parallel to the interface at different velocities. The stratified flow is modeled based on the incompressible potential flow theory, with the nonlinear boundary conditions at the interface. Boundary integral equations are formulated for the fully nonlinear interfacial wave generated by the hydrofoil. The numerical model results in a set of nonlinear algebra equations, which are solved using the quasi-Newton method. We show that the quasi-Newton method is more efficient than Newton’s method, which is often used for solving these types of equations in the literature. The wave profiles were analyzed in terms of the location and thickness of the hydrofoil, the Froude number, and the ratio of the densities of the two fluids. The computations show that the interfacial wave amplitude showed a trend first of increase and then of decrease with ...
Ultrasonics Sonochemistry | 2018
Xiao Huang; Qianxi Wang; A-Man Zhang; Jian Su
Acoustic bubbles have wide and important applications in ultrasonic cleaning, sonochemistry and medical ultrasonics. A two-microbubble system (TMS) under ultrasonic wave excitation is explored in the present study, by using the boundary element method (BEM) based on the potential flow theory. A parametric study of the behaviour of a TMS has been carried out in terms of the amplitude and direction of ultrasound as well as the sizes and separation distance of the two bubbles. Three regimes of the dynamic behaviour of the TMS have been identified in terms of the pressure amplitude of the ultrasonic wave. When subject to a strong wave with the pressure amplitude of 1 atm or larger, the two microbubbles become non-spherical during the first cycle of oscillation, with two counter liquid jets formed. When subject to a weak wave with the pressure amplitude of less than 0.5 atm, two microbubbles may be attracted, repelled, or translate along the wave direction with periodic stable separation distance, depending on their size ratio. However, for the TMS under moderate waves, bubbles undergo both non-spherical oscillation and translation as well as liquid jet rebounding.
Journal of the Acoustical Society of America | 2018
Yunqiao Liu; Michael L. Calvisi; Qianxi Wang
Encapsulated microbubbles (EMBs) are associated with a wide variety of important medical applications, including sonography, drug delivery, and sonoporation. The nonspherical oscillations, or shape modes, of EMBs strongly affect their stability and acoustic signature, and thus are an important factor to consider in the design and utilization of EMBs. Under acoustic forcing, EMBs often translate with significant velocity, which can excite shape modes, yet few studies have addressed the effect of translation on the shape stability of EMBs. In this work, the shape stability of an EMB subject to translation is investigated through development of an axisymmetric model for the case of small deformations. The potential flow in the bulk volume of the external flow is modeled using an asymptotic analysis. Viscous effects within the thin boundary layer at the interface are included, owing to the no-slip boundary condition, using Prosperettis theory [Q. Appl. Math. 34, 339 (1977)]. In-plane stress and bending moment due to the encapsulation are incorporated into the model through the dynamic boundary condition at the interface. The evolution equations for radial oscillation, translation, and shape oscillation of an EMB are derived, which can be reduced to model an uncoated gas bubble by neglecting the encapsulation properties. These equations are solved numerically to analyze the shape mode stability of an EMB and a gas bubble subject to an acoustic, traveling plane wave. The findings demonstrate the counterintuitive result that translation has a more destabilizing effect on an EMB than on a gas bubble. The no-slip condition at the encapsulating membrane is the main factor responsible for mediating this interfacial instability due to translation.