Qiao-Quan Liu
Ministry of Education
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiao-Quan Liu.
Plant Physiology | 2015
Xiangbai Dong; Du Zhang; Jie Liu; Qiao-Quan Liu; Hualiang Liu; Ling Jiang; Le Qing Qu
Overexpression or suppression of plastidial disproportionating enzyme affected amylose content, amylopectin structure, and morphological and physicochemical properties of starch granules in rice endosperm. Plastidial disproportionating enzyme1 (DPE1), an α-1,4-d-glucanotransferase, has been thought to be involved in storage starch synthesis in cereal crops. However, the precise function of DPE1 remains to be established. We present here the functional identification of DPE1 in storage starch synthesis in rice (Oryza sativa) by endosperm-specific gene overexpression and suppression. DPE1 overexpression decreased amylose content and resulted in small and tightly packed starch granules, whereas DPE1 suppression increased amylose content and formed heterogeneous-sized, spherical, and loosely packed starch granules. Chains with degree of polymerization (DP) of 6 to 10 and 23 to 38 were increased, while chains with DP of 11 to 22 were decreased in amylopectin from DPE1-overexpressing seeds. By contrast, chains with DP of 6 to 8 and 16 to 36 were decreased, while chains with DP of 9 to 15 were increased in amylopectin from DPE1-suppressed seeds. Changes in DPE1 gene expression also resulted in modifications in the thermal and pasting features of endosperm starch granules. In vitro analyses revealed that recombinant DPE1 can break down amylose into maltooligosaccharides in the presence of Glc, while it can transfer maltooligosyl groups from maltooligosaccharide to amylopectin or transfer maltooligosyl groups within and among amylopectin molecules in the absence of Glc. Moreover, a metabolic flow of maltooligosyl groups from amylose to amylopectin was clearly identifiable when comparing DPE1-overexpressing lines with DPE1-suppressed lines. These findings demonstrate that DPE1 participates substantially in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin.
Journal of Agricultural and Food Chemistry | 2017
Changquan Zhang; Shengjie Chen; Xinyu Ren; Yan Lu; Derui Liu; Xiuling Cai; Qian-Feng Li; Ji-Ping Gao; Qiao-Quan Liu
OsGBSSI, encoded by the Waxy (Wx) gene, is the key enzyme in the synthesis of amylose chains. Transgenic rice lines with various GBSSI activities were previously developed via site-directed mutagenesis of the Wx gene in the glutinous cultivar Guanglingxiangnuo (GLXN). In this study, grain morphology, molecular structure, and physicochemical properties were investigated in four transgenic lines with modified OsGBSSI activity and differences in amylose content. A milky opaque appearance was observed in low- and non-amylose rice grains due to air spaces in the starch granules. Gel permeation chromatography (GPC) and high-performance anion-exchange chromatography (HPAEC) analyses showed that although OsGBSSI can synthesize intermediate and extra-long amylopectin chains, it is mainly responsible for the longer amylose chains. Amylose content was positively correlated with trough viscosity, final viscosity, setback viscosity, pasting time, pasting temperature, and gelatinization temperature and negatively with gel consistency, breakdown viscosity, gelatinization enthalpy, and crystallinity. Overall, the findings suggest that OsGBSSI may be also involved in amylopectin biosynthesis, in turn affecting grain appearance, thermal and pasting properties, and the crystalline structure of starches in the rice endosperm.
Plant Physiology | 2018
Juan Wang; Pan Hu; Lingshang Lin; Zichun Chen; Qiao-Quan Liu; Cunxu Wei
The gradually decreasing starch-branching enzymes are responsible for the formation of four heterogeneous starch granules distributed regionally from inside to outside in high-amylose rice endosperm. Rice (Oryza sativa) endosperm is mainly occupied by homogeneous polygonal starch from inside to outside. However, morphologically different (heterogeneous) starches have been identified in some rice mutants. How these heterogeneous starches form remains unknown. A high-amylose rice line (TRS) generated through the antisense inhibition of starch branching synthase I (SBEI) and SBEIIb contains four heterogeneous starches: polygonal, aggregate, elongated, and hollow starch; these starches are regionally distributed in the endosperm from inside to outside. Here, we investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch. The results indicated that their molecular structures underwent regular changes, including gradually increasing true amylose content but decreasing amylopectin content and gradually increasing the ratio of amylopectin long chain but decreasing the ratio of amylopectin short chain. Granule-bound starch synthase I (GBSSI) amounts in the four heterogeneous starches were not significantly different from each other, but SBEI, SBEIIa, and SBEIIb showed a gradually decreasing trend. Further immunostaining analysis revealed that the gradually decreasing SBEs acting on the formation of the four heterogeneous granules were mainly due to the spatial distribution of the three SBEs in the endosperm. It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated. Furthermore, extra amylose coupled with altered amylopectin structure possibly led to morphological changes in heterogeneous granules.
Nature Communications | 2018
Dong-sheng Zhao; Qian-Feng Li; Changquan Zhang; Chen Zhang; Qing-Qing Yang; Li-Xu Pan; Xinyu Ren; Jun Lu; Minghong Gu; Qiao-Quan Liu
Identification of grain shape determining genes can facilitate breeding of rice cultivars with optimal grain shape and appearance quality. Here, we identify GS9 (Grain Shape Gene on Chromosome 9) gene by map-based cloning. The gs9 null mutant has slender grains, while overexpression GS9 results in round grains. GS9 encodes a protein without known conserved functional domain. It regulates grain shape by altering cell division. The interaction of GS9 and ovate family proteins OsOFP14 and OsOFP8 is modulated by OsGSK2 kinase, a key regulator of the brassinosteroids signaling pathway. Genetic interaction analysis reveals that GS9 functions independently from other previously identified grain size genes. Introducing the gs9 allele into elite rice cultivars significantly improves grain shape and appearance quality. It suggests potential application of gs9, alone or in combination with other grain size determining genes, in breeding of rice varieties with optimized grain shape.Rice grain shape or size is an important trait associated with both yield and appearance quality. Here, the authors identify GS9 as a negative transcription regulator of slender grain and show it can improve grain shape and appearance independently from other previously identified grain size genes.
Food and Chemical Toxicology | 2017
Qing-Qing Yang; Xiao-Yun He; Hong-Yu Wu; Changquan Zhang; Shi-Ying Zou; Tianqi Lang; Samuel Sai-Ming Sun; Qiao-Quan Liu
Lysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats. During the trial, body weight gain, food consumption and food efficiency were recorded, and no adverse effect was observed in rats fed transgenic (T) rice diets compared with non-transgenic (N) or control diets. At both midterm and final assessments, hematological parameters and serum chemistry were measured, and organ weights and histopathology were examined at the end of the trial. There was no diet-related difference in most hematological or serum chemistry parameters or organ weights between rats fed the T diets and those fed the N or control diets. Some parameters were found to differ between T groups and their corresponding N and/or control groups, but no adverse histological effect was observed. Taken together, the data from the current trial demonstrates that high lysine transgenic rice led to no adverse effect in Sprague-Dawley rats given a diet containing up to 70% HFL1 rice in 90 days.
Plant Physiology | 2018
Qing-Qing Yang; Dong-sheng Zhao; Changquan Zhang; Hong-Yu Wu; Qian-Feng Li; Minghong Gu; Samuel Sai-Ming Sun; Qiao-Quan Liu
Serotonin biosynthesis is dramatically elevated, and closely linked with dark-brown color of the endosperm, in high-lysine rice. Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (Oryza sativa), the endosperm takes on a characteristic dark-brown appearance. In this study, we use an integrated metabolomic and transcriptomic approach combined with functional validation to elucidate the key metabolites responsible for the dark-brown phenotype. Importantly, we found that serotonin biosynthesis was elevated dramatically and closely linked with dark-brown endosperm color in HFL rice. A functional connection between serotonin and endosperm color was confirmed via overexpression of TDC3, a key enzyme of serotonin biosynthesis. Furthermore, we show that both the jasmonate signaling pathway and TDC expression were strongly induced in the late stage of endosperm development of HFL rice, coinciding with serotonin accumulation and dark-brown pigmentation. We propose a model for the metabolic connection between Lys and serotonin metabolism in which elevated 2-aminoadipate from Lys catabolism may play a key role in the connection between the jasmonate signaling pathway, serotonin accumulation, and the brown phenotype in rice endosperm. Our data provide a deeper understanding of amino acid metabolism in rice. In addition, the finding that both Lys and serotonin accumulate in HFL rice grains should promote efforts to create a nutritionally favorable crop.
Biochimica et Biophysica Acta | 2018
Qian-Feng Li; Jun Lu; Jia-Wen Yu; Changquan Zhang; Jun-Xian He; Qiao-Quan Liu
BZR1 and BES1 are key transcription factors of brassinosteroid (BR) signaling and represent the integration node of numerous signaling cascades. Their direct target genes have been identified, and BZR1/BES1-DNA interactions have been experimentally verified. Importantly, BZR1/BES1 also integrate different growth and development events via direct protein-protein interactions. For instance, DELLAs, PIFs, ARF6, and PKL, all directly interact with BZR1/BES1, forming a BZR1/BES1-centered regulatory network to coordinate cell elongation. By dissecting various BZR1/BES1-mediated BR responses, the concept that BZR1/BES1 act as an integration hub in multisignal-regulated plant growth and development was developed. The regulation of BZR1/BES1 is dynamic and multifaceted, including phosphorylation status, activity, and stability. Moreover, certain epigenetic modification mechanisms are involved in BZR1/BES1s regulation of gene expression. Herein, we review recent advances in BZR1/BES1-mediated molecular connections between BR and other pathways, highlighting the central role of the BZR1/BES1 interactome in optimizing plant growth and development.
Plant Science | 2018
Wei He; Lingshang Lin; Juan Wang; Long Zhang; Qiao-Quan Liu; Cunxu Wei
Starches with comb-like profiles have been detected in some cereal endosperms with inhibiting expression of starch branching enzyme (SBE). Although amylose is considered to be an important factor in the formation of the comb-like profile, the details remain unclear. In this study, a transgenic rice line (GLXN-SBEI/IIb-) was derived from japonica waxy rice cultivar Guang-ling-xiang-nuo (GLXN) through antisense RNA inhibition of both SBEI and SBEIIb. The expression and activity of SBEI, SBEIIb and SBEIIa were declined. The GLXN-SBEI/IIb- endosperm contained large and small starch granules, and these starch granules had the comb-like profiles. The comb-like profiles of starches were detected in GLXN-SBEI/IIb- endosperm after 10 days after flowering with gradually increasing proportion of long branch-chains of amylopectin. The long branch-chains of amylopectin were responsible for forming the comb-like profiles at the outer region of starch granules. The gradually decreasing expression of SBEs influenced the synthesis of amylopectin during endosperm development, resulting in different structure between the inner and outer regions of starch granules from GLXN-SBEI/IIb- endosperm. The above results indicated that the long branch-chains of amylopectin, not amylose, led to the formation of comb-like profiles of starch granules in cereal crops with inhibiting expression of SBEs.
Plant Physiology | 2018
Chen Chen; Tingting Li; Shan Zhu; Zehou Liu; Zhenyuan Shi; Xiaoming Zheng; Rui Chen; Jianfeng Huang; Yi Shen; Shiyou Luo; Lei Wang; Qiao-Quan Liu; Zhiguo E
Compared with other species, rice imprinted genes are less associated with transposable elements, and the epigenetic regulation of imprinting occurs both prefertilization and postfertilization in rice. Genomic imprinting is an epigenetic phenomenon by which certain genes display differential expression in a parent-of-origin-dependent manner. Hundreds of imprinted genes have been identified from several plant species. Here, we identified, with a high level of confidence, 208 imprinted gene candidates from rice (Oryza sativa). Imprinted genes of rice showed limited association with the transposable elements, which contrasts with findings from Arabidopsis (Arabidopsis thaliana). Generally, imprinting in rice is conserved within a species, but intraspecific variation also was detected. The imprinted rice genes do not show signatures of selection, which suggests that domestication has had a limited evolutionary consequence on genomic imprinting. Although conservation of imprinting in plants is limited, we show that some loci are imprinted in several different species. Moreover, our results suggest that different types of epigenetic regulation can be established either before or after fertilization. Imprinted 24-nucleotide small RNAs and their neighboring genes tend to express alleles from different parents. This association was not observed between 21-nucleotide small RNAs and their neighboring genes. Together, our findings suggest that the regulation of imprinting can be diverse, and genomic imprinting has evolutionary and biological significance.
Journal of Agricultural and Food Chemistry | 2018
Qian-Feng Li; Jia-Wen Yu; Jun Lu; Hong-Yuan Fei; Ming Luo; Bu-Wei Cao; Li-Chun Huang; Changquan Zhang; Qiao-Quan Liu
Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.