Qiao Wenming
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiao Wenming.
Journal of Inorganic Materials | 2012
He Xing; Yang Junhe; Wang Can; Zhan Liang; Ling Licheng; Wang Yan-Li; Qiao Wenming
Graphite oxide was synthesized with Staudenmaier method using natural flake graphite as carbon source.After graphite oxide was impregnated into ammonium carbonate saturated solution,NH4+ intercalated graphite oxide was given.Rapid thermal exfoliation and reduction of NH4+ intercalated graphite oxide to graphene was achieved as well as the nitrogen-doping of graphene under the condition of microwave irradiation.SEM,TEM,EDS,XRD,XPS and Raman were performed to characterize the synthesized nitrogen-doping of graphene.The synthesized nitrogen-doped graphene was transparent and wrinkled with 2 5 graphite layers.The nitrogen content of as-prepared nitrogen-doped graphene was 1.56wt%,corresponding to pyridinc N,pyrrolic N and graphitic N incorporated into the graphitic network.
Journal of Materials Science | 1999
Liu Zhichang; Ling Licheng; Qiao Wenming; Liu Lang; Isao Mochida
Elemental sulphur was added into the starting pitch during the preparation of pitch-based spherical activated carbon in order to enhance the stabilization of pitch sphere. Pitch sphere (diameter 0.65–1.0 mm) without adding sulphur needs slow heating rate of 0.5 °C/min, high final temperature of 300 °C and long holding time of 20 h for the successful stabilization in air. While adding elemental sulphur with 2.5–10.0 wt % in total amount into starting pitch decreased the stabilization time significantly, pitch sphere containing 5.0 wt % of sulphur can be stabilized in air very easily at heating rate of 2.0 °C/min up to 270 °C without any holding time, and the successful stabilization time was only 3 h. Pitch molecules reacted with sulphur and some sulphur functional groups, such as C−SH, C−S−C, C=S, O=S=, O=S=O etc., were formed besides the oxygen functional groups under the stabilization condition. All of these sulphur functional groups acted as bridge bonds to make the pitch molecules polymerized so as to high up the softening point of pitch spheres, making the pitch spheres stabilized. Three kinds of sulfocompounds, i.e. H2S, COS and CS2 evolved in stabilization process.
无机材料学报 | 2012
Deng Hong-Gui; Jin Shuang-Ling; He Xing; Zhan Liang; Qiao Wenming; Ling Licheng
采用三氧化二铁(Fe 2 O 3 )为铁源, 抗坏血酸作碳源, 通过在200℃下水热反应并经煅烧后合成出LiFePO 4 /C纳米复合材料. 抗坏血酸在水热反应体系中不但作为最终反应产物的碳源, 而且还起到了限制LiFePO 4 颗粒生长的作用. 抗坏血酸的用量对产物的形貌、结构、碳含量有重要影响, 进而影响产物的电化学性能. 当抗坏血酸用量为1 g时, 制得的LiFePO 4 /C纳米复合材料的粒径在220~280 nm. 该材料用作锂离子电池的正极材料时, 在0.1 C 的电流密度下循环500次后其放电容量仍保持159 mAh/g, 并且具有较好的倍率性能.采用三氧化二铁(Fe 2 O 3 )为铁源, 抗坏血酸作碳源, 通过在200℃下水热反应并经煅烧后合成出LiFePO 4 /C纳米复合材料. 抗坏血酸在水热反应体系中不但作为最终反应产物的碳源, 而且还起到了限制LiFePO 4 颗粒生长的作用. 抗坏血酸的用量对产物的形貌、结构、碳含量有重要影响, 进而影响产物的电化学性能. 当抗坏血酸用量为1 g时, 制得的LiFePO 4 /C纳米复合材料的粒径在220~280 nm. 该材料用作锂离子电池的正极材料时, 在0.1 C 的电流密度下循环500次后其放电容量仍保持159 mAh/g, 并且具有较好的倍率性能.LiFePO 4 nanoparticles coated with a carbon layer were synthesized by a hydrothermal reaction-calcination process, using Fe 2 O 3 as an iron source and ascorbic acid as carbon source. The amount of ascorbic acid have an effect on the structure, phase and carbon amount of the final product. With 1 g ascorbic acid used in the reaction, the particle sizes of synthesized LiFePO 4 /C nanocomposites are in a range of 220–280 nm. Using as the cathode materials for the lithium-ion batteries, the as-prepared material shows high capacity and good cycle stability (159 mAh/g at 0.1C over 500 cycles), as well as good rate capability.
无机材料学报 | 2012
Jin Shuang-Ling; Deng Hong-Gui; Zhan Liang; Zhao Yue; Qiao Wenming; Ling Licheng
以球状钛乙醇酸盐为TiO 2 前驱体, 葡萄糖作碳源, 通过水热法制得Φ(300~400) nm的TiO 2 /C复合纳米微球. 葡萄糖的浓度对产物的形貌、结构、碳含量有重要影响, 进而影响产物的电化学性能. 当碳含量为7wt%时, TiO 2 /C纳米复合材料的晶粒大小、BET比表面积、平均孔径分别为7.1 nm、157 m 2 /g和5.2 nm; 该材料用作锂离子电池负极材料时, 在0.2 C 的电流密度下循环80次后的嵌锂容量为160 mAh/g, 并且具有较好的倍率性能.以球状钛乙醇酸盐为TiO 2 前驱体, 葡萄糖作碳源, 通过水热法制得Φ(300~400) nm的TiO 2 /C复合纳米微球. 葡萄糖的浓度对产物的形貌、结构、碳含量有重要影响, 进而影响产物的电化学性能. 当碳含量为7wt%时, TiO 2 /C纳米复合材料的晶粒大小、BET比表面积、平均孔径分别为7.1 nm、157 m 2 /g和5.2 nm; 该材料用作锂离子电池负极材料时, 在0.2 C 的电流密度下循环80次后的嵌锂容量为160 mAh/g, 并且具有较好的倍率性能.
Journal of Inorganic Materials | 2012
Wang Can; Wang Yan-Li; Zhan Liang; Yang Guangzhi; Yang Junhe; Qiao Wenming; Ling Licheng
Archive | 2013
Zhan Liang; Wang Yan-Li; Feng Junwei; Qiao Wenming; Ling Licheng
Carbon Techniques | 2010
Xie Fei; Wang Yan Li; Zhan Liang; Ge Ming; Liang Xiao-Yi; Qiao Wenming; Ling Li-cheng
Archive | 2015
Long Donghui; Zhong Yanping; Chen Mingqi; Wang Jitong; Qiao Wenming; Ling Licheng
Archive | 2015
Qiao Wenming; Zhang Chuanfang; Wu Qiufang; Ma Xinsheng; Wang Jitong; Long Donghui; Ling Licheng
Archive | 2013
Qiao Wenming; Ge Xiang; Wu Xiaolong; Wang Jitong; Long Donghui; Ling Licheng