Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiao-Yang Sun is active.

Publication


Featured researches published by Qiao-Yang Sun.


Analytical Biochemistry | 2008

Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate.

Ling-Wen Ding; Qiao-Yang Sun; Zhaoyu Wang; Yong-Bin Sun; Zeng-Fu Xu

The most commonly used protocol of the RNA isolation, the guanidine thiocyanate method, was unsuitable for recalcitrant plant tissues containing a large amount of storage proteins and secondary metabolites. We demonstrated that RNA could bind to the silica particles, which have been used successfully in DNA isolation from various sources, under a high concentration of NaCl in the presence of ethanol and sodium acetate. Based on this observation, an efficient, inexpensive, and highly reproducible technique, the acid phenol-silica method, was developed to isolate high-quality RNAs from various plant tissues recalcitrant to extraction in guanidine thiocyanate.


Blood | 2015

Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse

Manoj Garg; Yasunobu Nagata; Deepika Kanojia; Anand Mayakonda; Kenichi Yoshida; Sreya Haridas Keloth; Zhi Jiang Zang; Yusuke Okuno; Yuichi Shiraishi; Kenichi Chiba; Hiroko Tanaka; Satoru Miyano; Ling Wen Ding; Tamara Alpermann; Qiao-Yang Sun; De-Chen Lin; Wenwen Chien; Vikas Madan; Li Zhen Liu; Kar Tong Tan; Abhishek Sampath; Subhashree Venkatesan; Koiti Inokuchi; Satoshi Wakita; Hiroki Yamaguchi; Wee Joo Chng; Shirley Kow Yin Kham; Allen Eng Juh Yeoh; Masashi Sanada; Joanna Schiller

Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone.


Journal of Biotechnology | 2011

Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture

Qiao-Yang Sun; Ling-Wen Ding; George P. Lomonossoff; Yong-Bing Sun; Ming Luo; Chaoqiong Li; Liwen Jiang; Zeng-Fu Xu

Most human serum albumin (HSA) for medical applications is derived from human plasma due to the lack of suitable heterologous expression systems for recombinant HSA (rHSA). To determine whether plant cell cultures could provide an alternative source, we employed the hyper-translatable cowpea mosaic virus protein expression system (CPMV-HT) to stably express rHSA in tobacco Bright Yellow-2 (BY-2) cells. rHSA was stably produced with yield up to 11.88μg/ml in the culture medium, accounting for 0.7% of total soluble protein, in a 25-ml flask. Cultivation of transgenic cells in modified Murashige and Skoog medium with a pH of 8.0 improved the yield of rHSA two-fold, which may be the result of reduced proteolytic activity in the modified medium. A simple purification scheme was developed to purify the rHSA from culture medium, resulting in a recovery of 48.41% of the secreted rHSA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and N-terminal sequence analysis of the purified rHSA revealed that plant cell-derived rHSA is identical to that of the plasma-derived HSA. Our results show that the CPMV-HT system, which was originally developed as a transient expression system for use in whole plants, can also be used for high-level expression of rHSA, a protein highly susceptible to proteolysis, in transgenic tobacco cells.


Leukemia | 2016

Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

Vikas Madan; P. Shyamsunder; L. Han; Anand Mayakonda; Yasunobu Nagata; J. Sundaresan; Deepika Kanojia; Kenichi Yoshida; S. Ganesan; Norimichi Hattori; Noreen Fulton; Kar-Tong Tan; Tamara Alpermann; M. C. Kuo; S. Rostami; J. Matthews; Masashi Sanada; Li-Zhen Liu; Yuichi Shiraishi; Satoru Miyano; E. Chendamarai; Hsin-An Hou; Gregory Malnassy; T. Ma; Manoj Garg; Ding Lw; Qiao-Yang Sun; Wenwen Chien; Takayuki Ikezoe; Michael Lill

Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential.


British Journal of Cancer | 2014

KPT-330 has antitumour activity against non-small cell lung cancer.

Haibo Sun; Norimichi Hattori; Wenwen Chien; Qiao-Yang Sun; M Sudo; G L E-Ling; Ding Lw; Susan M. L. Lim; S Shacham; M Kauffman; T Nakamaki; Koeffler Hp

Background:We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo.Methods:The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC xenografts were treated with KPT-330, and tumour growth was assessed.Results:KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines. Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA, suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation.Conclusions:Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.


The Journal of Pathology | 2015

SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway.

Qiao-Yang Sun; Ling-Wen Ding; Jinfen Xiao; Wenwen Chien; Susan M. L. Lim; Norimichi Hattori; Lee Goodglick; David Chia; Mah; Mohammad Alavi; Kim; Ngan Doan; Jonathan W. Said; Xin-Yi Loh; Liang Xu; Li-Zhen Liu; Henry Yang; Takahide Hayano; Shuo Shi; Dong Xie; De-Chen Lin; Koeffler Hp

We investigated the oncogenic role of SETDB1, focusing on non‐small cell lung cancer (NSCLC), which has high expression of this protein. A total of 387 lung cancer cases were examined by immunohistochemistry; 72% of NSCLC samples were positive for SETDB1 staining, compared to 46% samples of normal bronchial epithelium (106 cases) (p <0.0001). The percentage of positive cells and the intensity of staining increased significantly with increased grade of disease. Forced expression of SETDB1 in NSCLC cell lines enhanced their clonogenic growth in vitro and markedly increased tumour size in a murine xenograft model, while silencing (shRNA) SETDB1 in NSCLC cells slowed their proliferation. SETDB1 positively stimulated activity of the WNT–β‐catenin pathway and diminished P53 expression, resulting in enhanced NSCLC growth in vitro and in vivo. Our finding suggests that therapeutic targeting of SETDB1 may benefit patients whose tumours express high levels of SETDB1. Copyright


Biotechnology & Genetic Engineering Reviews | 2008

Plant bioreactors for pharmaceuticals.

Yansong Miao; Yu Ding; Qiao-Yang Sun; Zeng-Fu Xu; Liwen Jiang

Abstract Plant bioreactors are attractive expression systems for economic production of pharmaceuticals. Various plant expression systems or platforms have been tested with certain degrees of success over the past years. However, further development and improvement are needed for more effective plant bioreactors. In this review we first summarize recent progress in various plant bioreactor expression systems and then focus on discussing protein compartmentation to unique organelles and various strategies for developing better plant bioreactors.


Leukemia | 2017

Ordering of mutations in acute myeloid leukemia with partial tandem duplication of MLL (MLL-PTD)

Qiao-Yang Sun; Ding Lw; Kar-Tong Tan; Wenwen Chien; Anand Mayakonda; De-Chen Lin; Xin-Yi Loh; Jinfen Xiao; Manja Meggendorfer; Tamara Alpermann; Manoj Garg; Susan M. L. Lim; Vikas Madan; Norimichi Hattori; Yasunobu Nagata; Satoru Miyano; Allen Eng Juh Yeoh; Hsin-An Hou; Yan Yi Jiang; Sumiko Takao; Li-Zhen Liu; Siew Zhuan Tan; Michael Lill; Mutsumi Hayashi; Akitoshi Kinoshita; H. Kantarjian; Steven M. Kornblau; Seishi Ogawa; Torsten Haferlach; Henry Yang

Partial tandem duplication of MLL (MLL-PTD) characterizes acute myeloid leukemia (AML) patients often with a poor prognosis. To understand the order of occurrence of MLL-PTD in relation to other major AML mutations and to identify novel mutations that may be present in this unique AML molecular subtype, exome and targeted sequencing was performed on 85 MLL-PTD AML samples using HiSeq-2000. Genes involved in the cohesin complex (STAG2), a splicing factor (U2AF1) and a poorly studied gene, MGA were recurrently mutated, whereas NPM1, one of the most frequently mutated AML gene, was not mutated in MLL-PTD patients. Interestingly, clonality analysis suggests that IDH2/1, DNMT3A, U2AF1 and TET2 mutations are clonal and occur early, and MLL-PTD likely arises after these initial mutations. Conversely, proliferative mutations (FLT3, RAS), typically appear later, are largely subclonal and tend to be unstable. This study provides important insights for understanding the relative importance of different mutations for defining a targeted therapeutic strategy for MLL-PTD AML patients.


Molecular Oncology | 2015

Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer

Wenwen Chien; Qiao-Yang Sun; Kian Leong Lee; Ling Wen Ding; Peer Wuensche; Lucia A. Torres-Fernandez; Siew Zhuan Tan; Itay Tokatly; Norazean Zaiden; Lorenz Poellinger; Seiichi Mori; Henry Yang; Jeffrey W. Tyner; H. Phillip Koeffler

We utilized three tiers of screening to identify novel therapeutic agents for pancreatic cancers. First, we analyzed 14 pancreatic cancer cell lines against a panel of 66 small‐molecule kinase inhibitors and dasatinib was the most potent. Second, we performed RNA expression analysis on 3 dasatinib‐resistant and 3 dasatinib–sensitive pancreatic cancer cell lines to profile their gene expression. Third, gene profiling data was integrated with the Connectivity Map database to search for potential drugs. Thioridazine was one of the top ranking small molecules with highly negative enrichment. Thioridazine and its family members of phenothiazine including penfluridol caused pancreatic cancer cell death and affected protein expression levels of molecules involved in cell cycle regulation, apoptosis, and multiple kinase activities. This family of drugs causes activation of protein phosphatase 2 (PP2A). The drug FTY‐720 (activator of PP2A) induced apoptosis of pancreatic cancer cells. Silencing catalytic unit of PP2A rendered pancreatic cancer cells resistant to penfluridol. Our observations suggest potential therapeutic use of penfluridol or similar agent associated with activation of PP2A in pancreatic cancers.


Cancer Research | 2017

Mutational Landscape of Pediatric Acute Lymphoblastic Leukemia

Ling Wen Ding; Qiao-Yang Sun; Kar Tong Tan; Wenwen Chien; Anand Mayakonda Thippeswamy; Allen Eng Juh Yeoh; Norihiko Kawamata; Yasunobu Nagata; Jin Fen Xiao; Xin Yi Loh; De-Chen Lin; Manoj Garg; Yan Yi Jiang; Liang Xu; Su Lin Lim; Li Zhen Liu; Vikas Madan; Masashi Sanada; Lucía Fernández; Hema Preethi; Michael Lill; Hagop M. Kantarjian; Steven M. Kornblau; Satoru Miyano; Der Cherng Liang; Seishi Ogawa; Lee Yung Shih; Henry Yang; H. Phillip Koeffler

Current standard of care for patients with pediatric acute lymphoblastic leukemia (ALL) is mainly effective, with high remission rates after treatment. However, the genetic perturbations that give rise to this disease remain largely undefined, limiting the ability to address resistant tumors or develop less toxic targeted therapies. Here, we report the use of next-generation sequencing to interrogate the genetic and pathogenic mechanisms of 240 pediatric ALL cases with their matched remission samples. Commonly mutated genes fell into several categories, including RAS/receptor tyrosine kinases, epigenetic regulators, transcription factors involved in lineage commitment, and the p53/cell-cycle pathway. Unique recurrent mutational hotspots were observed in epigenetic regulators CREBBP (R1446C/H), WHSC1 (E1099K), and the tyrosine kinase FLT3 (K663R, N676K). The mutant WHSC1 was established as a gain-of-function oncogene, while the epigenetic regulator ARID1A and transcription factor CTCF were functionally identified as potential tumor suppressors. Analysis of 28 diagnosis/relapse trio patients plus 10 relapse cases revealed four evolutionary paths and uncovered the ordering of acquisition of mutations in these patients. This study provides a detailed mutational portrait of pediatric ALL and gives insights into the molecular pathogenesis of this disease. Cancer Res; 77(2); 390-400. ©2016 AACR.

Collaboration


Dive into the Qiao-Yang Sun's collaboration.

Top Co-Authors

Avatar

Wenwen Chien

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ling-Wen Ding

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Henry Yang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

H. Phillip Koeffler

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

De-Chen Lin

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anand Mayakonda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jinfen Xiao

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Kar-Tong Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Manoj Garg

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Michael Lill

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge