Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiao Zhao is active.

Publication


Featured researches published by Qiao Zhao.


The Plant Cell | 2007

NUCLEAR PORE ANCHOR, the Arabidopsis Homolog of Tpr/Mlp1/Mlp2/Megator, Is Involved in mRNA Export and SUMO Homeostasis and Affects Diverse Aspects of Plant Development

Xianfeng Morgan Xu; Annkatrin Rose; Sivaramakrishnan Muthuswamy; Sun Yong Jeong; Sowmya Venkatakrishnan; Qiao Zhao; Iris Meier

Vertebrate Tpr and its yeast homologs Mlp1/Mlp2, long coiled-coil proteins of nuclear pore inner basket filaments, are involved in mRNA export, telomere organization, spindle pole assembly, and unspliced RNA retention. We identified Arabidopsis thaliana NUCLEAR PORE ANCHOR (NUA) encoding a 237-kD protein with similarity to Tpr. NUA is located at the inner surface of the nuclear envelope in interphase and in the vicinity of the spindle in prometaphase. Four T-DNA insertion lines were characterized, which comprise an allelic series of increasing severity for several correlating phenotypes, such as early flowering under short days and long days, increased abundance of SUMO conjugates, altered expression of several flowering regulators, and nuclear accumulation of poly(A)+ RNA. nua mutants phenocopy mutants of EARLY IN SHORT DAYS4 (ESD4), an Arabidopsis SUMO protease concentrated at the nuclear periphery. nua esd4 double mutants resemble nua and esd4 single mutants, suggesting that the two proteins act in the same pathway or complex, supported by yeast two-hybrid interaction. Our data indicate that NUA is a component of nuclear pore-associated steps of sumoylation and mRNA export in plants and that defects in these processes affect the signaling events of flowering time regulation and additional developmental processes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

RanGAP1 is a continuous marker of the Arabidopsis cell division plane

Xianfeng Morgan Xu; Qiao Zhao; Thushani Rodrigo-Peiris; Jelena Brkljacic; Chao Sylvia He; Sabine Müller; Iris Meier

In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division.


The Plant Cell | 2008

Two Distinct Interacting Classes of Nuclear Envelope–Associated Coiled-Coil Proteins Are Required for the Tissue-Specific Nuclear Envelope Targeting of Arabidopsis RanGAP

Qiao Zhao; Jelena Brkljacic; Iris Meier

Ran GTPase plays essential roles in multiple cellular processes, including nucleocytoplasmic transport, spindle formation, and postmitotic nuclear envelope (NE) reassembly. The cytoplasmic Ran GTPase activating protein RanGAP is critical to establish a functional RanGTP/RanGDP gradient across the NE and is associated with the outer surface of the NE in metazoan and higher plant cells. Arabidopsis thaliana RanGAP association with the root tip NE requires a family of likely plant-specific nucleoporins combining coiled-coil and transmembrane domains (CC-TMD) and WPP domain–interacting proteins (WIPs). We have now identified, by tandem affinity purification coupled with mass spectrometry, a second family of CC-TMD proteins, structurally similar, yet clearly distinct from the WIP family, that is required for RanGAP NE association in root tip cells. A combination of loss-of-function mutant analysis and protein interaction data indicates that at least one member of each NE-associated CC-TMD protein family is required for RanGAP targeting in root tip cells, while both families are dispensable in other plant tissues. This suggests an unanticipated complexity of RanGAP NE targeting in higher plant cells, contrasting both the single nucleoporin anchor in metazoans and the lack of targeting in fungi and proposes an early evolutionary divergence of the underlying plant and animal mechanisms.


Plant Physiology | 2006

Identification and Characterization of the Arabidopsis Orthologs of Nuclear Transport Factor 2, the Nuclear Import Factor of Ran

Qiao Zhao; Sara Leung; Anita H. Corbett; Iris Meier

Ran is a multifunctional small GTPase that is involved in nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. Nuclear import of Ran relies on a small RanGDP-binding protein, Nuclear Transport Factor 2 (NTF2). Three proteins are expressed in Arabidopsis (Arabidopsis thaliana) that show significant sequence similarity to human and yeast (Saccharomyces cerevisiae) NTF2. Here, we demonstrate that two of them, AtNTF2a and AtNTF2b, can functionally replace the essential NTF2 gene in yeast. Consistent with this finding, both AtNTF2a and AtNTF2b interact with yeast and Arabidopsis Ran. The third NTF2-related protein, AtNTL, does not functionally replace NTF2 in yeast. Similar to yeast NTF2-green fluorescent protein (GFP), AtNTF2a-GFP and AtNTF2b-GFP accumulate at the nuclear rim. The AtNTF2a E38K and E91K mutants, which fail to bind Ran, are not functional in yeast, indicating conservation of the requirement for these key amino acids in plants and yeast. AtNTF2a overexpression, but not AtNTF2aE38K overexpression, blocks nuclear import of a plant transcription factor in Nicotiana benthamiana leaves, indicating that excess AtNTF2a disrupts nuclear import in a Ran-binding-dependent manner. On the basis of these results, we propose that AtNTF2a and AtNTF2b function in Ran import in Arabidopsis and that nuclear import of Ran is functionally conserved in plants.


Plant Signaling & Behavior | 2011

Identification and characterization of the Arabidopsis FG-repeat nucleoporin Nup62

Qiao Zhao; Iris Meier

Ran is a multifunctional small GTPase that is involved in nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope reformation. Nuclear transport factor 2 (NTF2) facilitates nuclear import of Ran. It binds FxFG repeat-containing domains of the nucleoporins Nup62 (vertebrate) and Nsp1p (yeast). Here, we have identified Arabidopsis Nup62 through its sequence similarity to mammalian Nup62 and yeast Nsp1p. A GFP¬AtNup62 fusion protein is associated with the nuclear envelope in transgenic Arabidopsis plants and interacts in planta with AtNTF2a, one of the two Arabidopsis NTF2 homologs. Overexpression-based co-suppression of AtNup62 leads to severely dwarfed, early-flowering plants, suggesting an important function for Nup62 in plants.


Plant Physiology | 2009

WPP-Domain Proteins Mimic the Activity of the HSC70-1 Chaperone in Preventing Mistargeting of RanGAP1-Anchoring Protein WIT1

Jelena Brkljacic; Qiao Zhao; Iris Meier

Arabidopsis (Arabidopsis thaliana) tryptophan-proline-proline (WPP)-domain proteins, WPP1 and WPP2, are plant-unique, nuclear envelope-associated proteins of unknown function. They have sequence similarity to the nuclear envelope-targeting domain of plant RanGAP1, the GTPase activating protein of the small GTPase Ran. WPP domain-interacting tail-anchored protein 1 (WIT1) and WIT2 are two Arabidopsis proteins containing a coiled-coil domain and a C-terminal predicted transmembrane domain. They are required for RanGAP1 association with the nuclear envelope in root tips. Here, we show that WIT1 also binds WPP1 and WPP2 in planta, we identify the chaperone heat shock cognate protein 70-1 (HSC70-1) as in vivo interaction partner of WPP1 and WPP2, and we show that HSC70-1 interacts in planta with WIT1. WIT1 and green fluorescent protein (GFP)-WIT1 are targeted to the nuclear envelope in Arabidopsis. In contrast, GFP-WIT1 forms large cytoplasmic aggregates when overexpressed transiently in Nicotiana benthamiana leaf epidermis cells. Coexpression of HSC70-1 significantly reduces GFP-WIT1 aggregation and permits association of most GFP-WIT1 with the nuclear envelope. Significantly, WPP1 and WPP2 show the same activity. A WPP1 mutant with reduced affinity for GFP-WIT1 fails to decrease its aggregation. While the WPP-domain proteins act on a region of WIT1 containing the coiled-coil domain, HSC70-1 additionally acts on the C-terminal transmembrane domain. Taken together, our data suggest that both HSC70-1 and the WPP-domain proteins play a role in facilitating WIT1 nuclear envelope targeting, which is, to our knowledge, the first described in planta activity for the WPP-domain proteins.


Biochemical Society Transactions | 2010

Targeting proteins to the plant nuclear envelope

Iris Meier; Xiao Zhou; Jelena Brkljacic; Annkatrin Rose; Qiao Zhao; Xianfeng Morgan Xu

The nuclear envelope and the nuclear pore are important structures that both separate and selectively connect the nucleoplasm and the cytoplasm. The requirements for specific targeting of proteins to the plant nuclear envelope and nuclear pore are poorly understood. How are transmembrane-domain proteins sorted to the nuclear envelope and nuclear pore membranes? What protein-protein interactions are involved in associating other proteins to the nuclear pore? Are there plant-specific aspects to these processes? We are using the case of the nuclear pore-associated Ran-cycle component RanGAP (Ran GTPase-activating protein) to address these fundamental questions. Plant RanGAP is targeted to the nuclear pore by a plant-specific mechanism involving two families of nuclear pore-associated proteins [WIP (WPP-domain-interacting protein) and WIT (WPP-domain-interacting tail-anchored protein)] not found outside the land plant lineage. One protein family (WIP or WIT) is sufficient for RanGAP targeting in differentiated root cells, whereas both families are necessary in meristematic cells. A C-terminal predicted transmembrane domain is sufficient for targeting WIP proteins to the nuclear envelope. Nuclear-envelope targeting of WIT proteins requires a coiled-coil domain and is facilitated by HSC70 (heat-shock cognate 70 stress protein) chaperones and a class of plant-specific proteins resembling the RanGAP-targeting domain (WPP proteins). Taken together, this sheds the first light on the requirements and interdependences of nuclear envelope and nuclear pore targeting in land plants.


Journal of Experimental Botany | 2011

RanGAP is required for post-meiotic mitosis in female gametophyte development in Arabidopsis thaliana

Thushani Rodrigo-Peiris; Xianfeng Morgan Xu; Qiao Zhao; Horng-Jing Wang; Iris Meier

RanGAP is the GTPase-activating protein of the small GTPase Ran and is involved in nucleocytoplasmic transport in yeast and animals via the Ran cycle and in mitotic cell division. Arabidopsis thaliana has two copies of RanGAP, RanGAP1 and RanGAP2. To investigate the function of plant RanGAP, T-DNA insertional mutants were analysed. Arabidopsis plants with a null mutant of either RanGAP1 or RanGAP2 had no observable phenotype. Analysis of segregating progeny showed that double mutants in RanGAP1 and RanGAP2 are female gametophyte defective. Ovule clearing with differential interference contrast optics showed that mutant female gametophytes were arrested at interphase, predominantly after the first mitotic division following meiosis. In contrast, mutant pollen developed and functioned normally. These results show that the two RanGAPs are redundant and indispensable for female gametophyte development in Arabidopsis but dispensable for pollen development. Nuclear division arrest during a mitotic stage suggests a role for plant RanGAP in mitotic cell cycle progression during female gametophyte development.


Journal of Microscopy | 2008

Going green: plants' alternative way to position the Ran gradient.

Iris Meier; Xianfeng Morgan Xu; Jelena Brkljacic; Qiao Zhao; H.-J. Wang

Ran is a multi‐functional small GTPase of the Ras super‐family involved in nucleocytoplasmic transport, mitotic spindle assembly, cell cycle control and nuclear envelope (NE) formation. Its roles are accomplished by the asymmetric distribution of its GTP‐ and GDP‐bound forms, enabled by the specific localization of Ran accessory proteins, the Ran GTPase‐activating protein RanGAP and the nucleotide exchange factor RCC1. Mammalian RanGAP1 is targeted to the NE during interphase and to the spindle and kinetochores during mitosis via a SUMOylated C‐terminal domain and interaction with the nucleoporin Nup358/RanBP2. Arabidopsis RanGAP1 (AtRanGAP1) lacks the SUMOylated C‐terminal domain of vertebrate RanGAP, but contains a plant‐specific N‐terminal domain (WPP domain), which is necessary and sufficient for its targeting to the NE in interphase. AtRanGAP1 has a mitotic trafficking pattern uniquely different from that of vertebrate RanGAP, which includes targeting to the outward‐growing rim of the cell plate. The WPP domain is necessary and sufficient for this targeting. Now, a novel family of plant‐specific, nuclear pore‐associated proteins has been identified in Arabidopsis, which is essential for anchoring RanGAP to the Arabidopsis nuclear envelope at the root meristem. This suggests that RanGAP anchoring to the nuclear pore has been solved in two fundamentally different ways in animals and plants. These findings support a separate evolution of RanGAP targeting mechanisms in different kingdoms, possibly related to different functional geometries of the Ran gradient in animal and higher plant cell division.


Archive | 2009

WPP-Domain Proteins Mimic the Activity of the HSC70-1 Chaperone in Preventing Mistargeting of

Jelena Brkljacic; Qiao Zhao; Iris Meier

Collaboration


Dive into the Qiao Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge