Qiaobing Xu
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiaobing Xu.
Small | 2009
Qiaobing Xu; Michinao Hashimoto; Tram T. Dang; Todd Hoare; Daniel S. Kohane; George M. Whitesides; Robert Langer; Daniel G. Anderson
Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several therapies approved by the US Food and Drug Administration. Conventional emulsion-based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug-loaded microparticles from biodegradable polymers using the microfluidic flow-focusing (FF) devices and the drug-delivery properties of those particles. Particles are engineered with defined sizes, ranging from 10 microm to 50 microm. These particles are nearly monodisperse (polydispersity index = 3.9%). A model amphiphilic drug (bupivacaine) is incorporated within the biodegradable matrix of the particles. Kinetic analysis shows that the release of the drug from these monodisperse particles is slower than that from conventional methods of the same average size but a broader distribution of sizes and, most importantly, exhibit a significantly lower initial burst than that observed with conventional particles. The difference in the initial kinetics of drug release is attributed to the uniform distribution of the drug inside the particles generated using the microfluidic methods. These results demonstrate the utility of microfluidic FF for the generation of homogenous systems of particles for the delivery of drugs.
Angewandte Chemie | 2014
Yi Kuang; Junfeng Shi; Jie Li; Dan Yuan; Kyle A. Alberti; Qiaobing Xu; Bing Xu
Fibrils formed by proteins are vital components for cells. However, selective formation of xenogenous nanofibrils of small molecules on mammalian cells has yet to be observed. Here we report an unexpected observation of hydrogel/nanonets of a small D-peptide derivative in pericellular space. Surface and secretory phosphatases dephosphorylate a precursor of a hydrogelator to trigger the self-assembly of the hydrogelator and to result in pericellular hydrogel/nanonets selectively around the cancer cells that overexpress phosphatases. Cell-based assays confirm that the pericellular hydrogel/nanonets block cellular mass exchange to induce apoptosis of cancer cells, including multidrug-resistance (MDR) cancer cells, MES-SA/Dx5. Pericellular hydrogel/nanonets of small molecules to exhibit distinct functions illustrates a fundamentally new way to engineer molecular assemblies spatiotemporally in cellular microenvironment for inhibiting cancer cell growth and even metastasis.
The FASEB Journal | 2008
Nan Xia; Charles K. Thodeti; Thomas Hunt; Qiaobing Xu; Madelyn Ho; George M. Whitesides; Robert M. Westervelt; Donald E. Ingber
Local physical interactions between cells and extracellular matrix (ECM) influence directional cell motility that is critical for tissue development, wound repair, and cancer metastasis. Here we test the possibility that the precise spatial positioning of focal adhesions governs the direction in which cells spread and move. NIH 3T3 cells were cultured on circular or linear ECM islands, which were created using a microcontact printing technique and were 1 μm wide and of various lengths (1 to 8 μm) and separated by 1 to 4.5 μm wide nonadhesive barrier regions. Cells could be driven proactively to spread and move in particular directions by altering either the interisland spacing or the shape of similar‐sized ECM islands. Immunofluorescence microscopy confirmed that focal adhesions assembled preferentially above the ECM islands, with the greatest staining intensity being observed at adhesion sites along the cell periphery. Rac‐FRET analysis of living cells revealed that Rac became activated within 2 min after peripheral membrane extensions adhered to new ECM islands, and this activation wave propagated outward in an oriented manner as the cells spread from island to island. A computational model, which incorporates that cells preferentially protrude membrane processes from regions near newly formed focal adhesion contacts, could predict with high accuracy the effects of six different arrangements of micropatterned ECM islands on directional cell spreading. Taken together, these results suggest that physical properties of the ECM may influence directional cell movement by dictating where cells will form new focal adhesions and activate Rac and, hence, govern where new membrane protrusions will form.— Xia N., Thodeti, C. K., Hunt, T. P., Xu, Q., Ho, M., Whitesides, G. M., Westervelt, R., Ingber D. E. Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. FASEB J. 22, 1649–1659 (2008)
Biomacromolecules | 2011
Xiao-Xia Xia; Qiaobing Xu; Xiao Hu; Guokui Qin; David L. Kaplan
Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELPs repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.
Accounts of Chemical Research | 2008
Qiaobing Xu; Robert M. Rioux; Michael D. Dickey; George M. Whitesides
This Account reviews nanoskiving--a new technique that combines thin-film deposition of metal on a topographically contoured substrate with sectioning using an ultramicrotome--as a method of fabricating nanostructures that could replace conventional top-down techniques in selected applications. Photolithography and scanning beam lithography, conventional top-down techniques to generate nanoscale structures and nanostructured materials, are useful, versatile, and highly developed, but they also have limitations: high capital and operating costs, limited availability of the facilities required to use them, an inability to fabricate structures on nonplanar surfaces, and restrictions on certain classes of materials. Nanoscience and nanotechnology would benefit from new, low-cost techniques to fabricate electrically and optically functional structures with dimensions of tens of nanometers, even if (or perhaps especially if) these techniques have a different range of application than does photolithography or scanning beam lithography. Nanoskiving provides a simple and convenient procedure to produce arrays of structures with cross-sectional dimensions in the 30-nm regime. The dimensions of the structures are determined by (i) the thickness of the deposited thin film (tens of nanometers), (ii) the topography (submicrometer, using soft lithography) of the surface onto which the thin film is deposited, and (iii) the thickness of the section cut by the microtome (> or =30 nm by ultramicrotomy). The ability to control the dimensions of nanostructures, combined with the ability to manipulate and position them, enables the fabrication of nanostructures with geometries that are difficult to prepare by other methods. The nanostructures produced by nanoskiving are embedded in a thin epoxy matrix. These epoxy slabs, although fragile, have sufficient mechanical strength to be manipulated and positioned; this mechanical integrity allows the nanostructures to be stacked in layers, draped over curved surfaces, and suspended across gaps, while retaining the in-plane geometry of the nanostructures embedded in the epoxy. After removal of the polymer matrix by plasma oxidation, these structures generate suspended and draped nanostructures and nanostructures on curved surfaces. Two classes of applications, in optics and in electronics, demonstrate the utility of nanostructures fabricated by nanoskiving. This technique will be of primary interest to researchers who wish to generate simple nanostructures, singly or in arrays, more simply and quickly than can be accomplished in the clean-room. It is easily accessible to those not trained in top-down procedures for fabrication and those with limited or no access to the equipment and facilities needed for photolithography or scanning-beam fabrication. This Account discusses a new fabrication method (nanoskiving) that produces arrays of metal nanostructures. The defining process in nanoskiving is cutting slabs from a polymeric matrix containing embedded, more extended metal structures.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Ming Wang; John A Zuris; Fantao Meng; Holly A. Rees; Shuo Sun; Pu Deng; Yong Han; Xue Gao; Dimitra Pouli; Qi Wu; Irene Georgakoudi; David R. Liu; Qiaobing Xu
Significance The therapeutic potential of protein-based genome editing is dependent on the delivery of proteins to appropriate intracellular targets. Here we report that combining bioreducible lipid nanoparticles and negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the self-assembly of nanoparticles for potent protein delivery and genome editing. The design of bioreducible lipids facilitates the degradation of nanoparticles inside cells in response to the reductive intracellular environment, enhancing the endosome escape of protein. In addition, modulation of protein charge through either genetic fusion of supercharged protein or complexation of Cas9 with its inherently anionic sgRNA allows highly efficient protein delivery and effective genome editing in mammalian cells and functional recombinase delivery in the rodent brain. A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.
ACS Nano | 2010
Hao Cheng; Christian J. Kastrup; Renuka Ramanathan; Daniel J. Siegwart; Minglin Ma; Said R. Bogatyrev; Qiaobing Xu; Kathryn A. Whitehead; Robert Langer; Daniel G. Anderson
The targeted delivery of therapeutics to tumors remains an important challenge in cancer nanomedicine. Attaching nanoparticles to cells that have tumoritropic migratory properties is a promising modality to address this challenge. Here we describe a technique to create nanoparticulate cellular patches that remain attached to the membrane of cells for up to 2 days. NeutrAvidin-coated nanoparticles were anchored on cells possessing biotinylated plasma membrane. Human bone marrow derived mesenchymal stem cells with nanoparticulate patches retained their inherent tumoritropic properties as shown using a tumor model in a 3D extracellular matrix. Additionally, human umbilical vein endothelial cells with nanoparticulate patches were able to retain their functional properties and form multicellular structures as rapidly as unmodified endothelial cells. These results provide a novel strategy to actively deliver nanostructures and therapeutics to tumors utilizing stem cells as carriers and also suggest that nanoparticulate cellular patches may have applications in tissue regeneration.
Angewandte Chemie | 2014
Ming Wang; Shuo Sun; Caleb I. Neufeld; Bernardo Perez-Ramirez; Qiaobing Xu
Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A-NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A-NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A-NBC reactivation, RNase A-NBC shows a significant specific cytotoxicity against tumor cells.
Advanced Drug Delivery Reviews | 2012
Shilpa Sant; Sarah L. Tao; Omar Z. Fisher; Qiaobing Xu; Nicholas A. Peppas; Ali Khademhosseini
Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy.
Biomacromolecules | 2014
Xiao-Xia Xia; Ming Wang; Yinan Lin; Qiaobing Xu; David L. Kaplan
Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.