Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiaojun He is active.

Publication


Featured researches published by Qiaojun He.


Organic and Biomolecular Chemistry | 2010

Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells

Xin Li; Shijing Qian; Qiaojun He; Bo Yang; Jia Li; Yongzhou Hu

A new fluorescent turn-on probe for the rapid optical sensing of thiols has been designed and synthesized. The probe displays high on/off signal ratios and high selectivity towards thiols. The potential of the probe as a biosensor for thiols was demonstrated by imaging of thiols in living cells.


Neuron | 2012

Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System

Qinjie Weng; Ying Chen; Haibo Wang; Xiaomei Xu; Bo Yang; Qiaojun He; Weinian Shou; Yan(陈雁) Chen; Yujiro Higashi; Veronique van den Berghe; Eve Seuntjens; Steven G. Kernie; Polina Bukshpun; Elliott H. Sherr; Danny Huylebroeck; Q. Richard Lu

Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.


European Journal of Medicinal Chemistry | 2009

Design, synthesis and AChE inhibitory activity of indanone and aurone derivatives.

Rong Sheng; Yu Xu; Chunqi Hu; Jing Zhang; Xiao Lin; Jingya Li; Bo Yang; Qiaojun He; Yongzhou Hu

A new series of indanone and aurone derivatives have been synthesized and tested for in vitro AChE inhibitory activity by modified Ellman method. Most of them exhibit AChE inhibitory activities superior to rivastigmine. Further, the most potent compound 1g was selected to evaluate the effect on the acquisition and memory impairment by mice step-down passive avoidance test.


Chemical Communications | 2013

An ICT-based fluorescent switch-on probe for hydrogen sulfide in living cells

Xin Li; Shuai Zhang; Ji Cao; Nan Xie; Tao Liu; Bo Yang; Qiaojun He; Yongzhou Hu

An ICT-based fluorescent turn-on probe for hydrogen sulfide with high selectivity has been designed and synthesized. It exhibits up to 62-fold switch-on response toward H2S at given concentrations and can detect H2S in living cells with high sensitivity.


Journal of Pharmacology and Experimental Therapeutics | 2010

Celastrol Acts as a Potent Antimetastatic Agent Targeting β1 Integrin and Inhibiting Cell-Extracellular Matrix Adhesion, in Part via the p38 Mitogen-Activated Protein Kinase Pathway

Hong Zhu; Xiao Wen Liu; Tian Yu Cai; Ji Cao; Chong Xing Tu; Wei Lu; Qiaojun He; Bo Yang

Malignant tumors remain a significant health threat, with death often occurring as a result of metastasis. Cell adhesion is a crucial step in the metastatic cascade of tumor cells, and interruption of this step is considered to be a logical strategy for prevention and treatment of tumor metastasis. Celastrol [3-hydroxy-24-nor-2-oxo-1(10),3,5,7-friedelatetraen-29-oic acid], a quinone methide triterpene from the medicinal plant Tripterygium wilfordii, possesses antitumor activities, whereas the underlying mechanism(s) remains elusive. Here, we found that celastrol inhibited cell-extracellular matrix (ECM) adhesion of human lung cancer 95-D and mouse melanoma B16F10 cells. This inhibition was achieved through suppressing β1 integrin ligand affinity and focal adhesion formation, accompanied by the reduced phosphorylation of focal adhesion kinase (FAK). In understanding the underlying mechanisms, we found that celastrol activated p38 mitogen-activated protein kinase (MAPK) by phosphorylation before the decrement of phosphorylated FAK and that this action was independent of the presence of fibronectin. Using 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), a specific inhibitor of p38 MAPK, the effects of celastrol on β1 integrin function, cell-ECM adhesion, and phosphorylation of FAK were partially attenuated. In addition, focal adhesion-dependent cell migration and invasion were both inhibited by treatment with celastrol. Finally, the antimetastatic activity of celastrol was examined in vivo using the B16F10-green fluorescent protein-injected C57BL/6 mouse model, as indicated by decreased pulmonary metastases in celastrol-administrated mice. Taken together, these data demonstrate for the first time that celastrol exerts potent antimetastatic activity both in vitro and in vivo, and they provide new evidence for the critical roles of p38 MAPK in the regulation of integrin function and cell adhesion.


Journal of Ethnopharmacology | 2010

Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo

Meimei Si; Jianshu Lou; Chang-Xin Zhou; Juan-Na Shen; Honghai Wu; Bo Yang; Qiaojun He; Haoshu Wu

ETHNOPHARMACOLOGICAL RELEVANCE The radix of Acorus calamus L. (AC) is widely used in the therapy of diabetes in traditional folk medicine of America and Indonesia, and we previously reported the insulin sensitizing activity of the ethyl acetate fraction of AC (ACE). AIM OF THE STUDY To investigate the insulin releasing and alpha-glucosidase inhibitory activity of ACE in vitro and in vivo. MATERIALS AND METHODS Insulin releasing and alpha-glucosidase inhibitory effects of different fractions from AC were detected in vitro using HIT-T15 cell line and alpha-glucosidase enzyme. Furthermore, effects of ACE orally on serum glucose were detected in fasted and glucose/amylum challenged normal mice. RESULTS AC and ACE increased insulin secretion in HIT-T15 cells as gliclazide did. As in vivo results, ACE (400 and 800 mg/kg) significantly decreased fasting serum glucose, and suppressed the increase of blood glucose levels after 2g/kg glucose loading in normal mice. In addition, ACE as a mixed-type inhibitor inhibited alpha-glucosidase activity in vitro with an IC(50) of 0.41 microg/ml, and 100mg/kg of it clearly reduced the increase of blood glucose levels after 5 g/kg amylum loading in normal mice. CONCLUSIONS Apart from its insulin sensitizing effect, ACE may have hypoglycemic effects via mechanisms of insulin releasing and alpha-glucosidase inhibition, and thus improves postprandial hyperglycemia and cardiovascular complications.


Toxicology and Applied Pharmacology | 2010

Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

Yuqin Zhao; Tao Xue; Xiaochun Yang; Hong Zhu; Xiaofei Ding; Liming Lou; Wei Lu; Bo Yang; Qiaojun He

Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.


Pharmacological Research | 2010

HIF-1α-dependent autophagy protects HeLa cells from fenretinide (4-HPR)-induced apoptosis in hypoxia ☆

Xiao Wen Liu; Yi Su; Hong Zhu; Ji Cao; Wan Jing Ding; Yu Chen Zhao; Qiaojun He; Bo Yang

Novel therapeutic strategies are needed to address and to solve the emerging problem of hypoxia-induced resistance to anticancer drugs. N-(4-Hydroxyphenyl)retinamide (4-HPR) exhibits potent anticancer and chemopreventive activities, but its inefficiency under hypoxia, through undetermined mechanisms, may contribute to its lack of activity in clinical trials. In this study, we showed that under normoxia, 4-HPR resulted in apoptosis and ultimate cell death; in contrast, under hypoxia, autophagy was preferentially induced by 4-HPR at an equivalent concentration, accompanied by microtubule associated protein light-chain 3 (LC3) conversion and acidic vesicular organelle formation. Under hypoxia, autophagy inhibition by 3-methyladenine or chloroquine significantly enhanced apoptosis and decreased cell viability in 4-HPR-exposed cells, indicating that autophagy prevents cancer cell death and presumably leads to hypoxia-induced resistance to 4-HPR. Importantly, knockdown of hypoxia-inducible factor-1α (HIF-1α) inhibited autophagy but promoted 4-HPR-induced apoptosis under hypoxia, demonstrating its critical role as a mediator of this protective autophagy. The present study provides the first evidence supporting the hypothesis that autophagy and apoptosis can be differentially induced by 4-HPR under different oxygen conditions; mediated by HIF-1α, 4-HPR-induced autophagy under hypoxia confers a survival advantage to HeLa cells, protects them from 4-HPR-induced death signals, and thus contributes to their hypoxia-induced resistance to this agent. Our data suggest that autophagy inhibition is a potential alternative strategy to overcome hypoxia-induced resistance to 4-HPR and enhance the anticancer activities of this agent.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors

Rong Sheng; Xiao Lin; Jing Zhang; Kim Sun Chol; Wenhai Huang; Bo Yang; Qiaojun He; Yongzhou Hu

A new series of flavonoid derivatives have been designed, synthesized and evaluated as potent AChE inhibitors. Most of them showed more potent inhibitory activities to AChE than rivastigmine. The most potent inhibitor isoflavone derivative 10d inhibit AChE with a IC(50) of 4 nM and showed high BChE/AChE inhibition ratio (4575-fold), superior to donepezil (IC(50)=12 nM, 389-fold). Molecular docking studies were also performed to explore the detailed interaction with AChE.


European Journal of Medicinal Chemistry | 2009

Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors.

Ping Jia; Rong Sheng; Jing Zhang; Liang Fang; Qiaojun He; Bo Yang; Yongzhou Hu

A new series of galanthamine derivatives have been designed, synthesized and evaluated as acetylcholinesterase inhibitors. All of the new compounds prepared showed high AChE inhibitory activities, with compound 3e that has an N-hexyl-benzyl piperidine substituent on the nitrogen atom reaching the best inhibitory activity for AChE (IC(50)=5.62 nM). The docking study performed with AutoDock demonstrated that 3e was nicely accommodated by AChE.

Collaboration


Dive into the Qiaojun He's collaboration.

Top Co-Authors

Avatar

Bo Yang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Cao

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge