Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiaoli Li is active.

Publication


Featured researches published by Qiaoli Li.


Experimental Dermatology | 2009

Pseudoxanthoma elasticum : clinical phenotypes, molecular genetics and putative pathomechanisms

Qiaoli Li; Qiujie Jiang; Ellen Pfendner; András Váradi; Jouni Uitto

Abstract:  Pseudoxanthoma elasticum (PXE), a prototype of heritable multisystem disorders, is characterised by pathologic mineralisation of connective tissues, with primary clinical manifestations in the skin, eyes and the cardiovascular system. The causative gene was initially identified as ABCC6 which encodes an ABC transporter protein (ABCC6) expressed primarily in the liver and the kidneys. The critical role of ABCC6 in ectopic mineralisation has been confirmed by the development of Abcc6−/− knock‐out mice which recapitulate the features of connective tissue mineralisation characteristic of PXE. Over 300 distinct loss‐of‐function mutations representative of over 1000 mutant alleles in ABCC6 have been identified by streamlined mutation detection strategies in this autosomal recessive disease. More recently, missense mutations in the GGCX gene, either in compound heterozygous state or digenic with a recurrent ABCC6 nonsense mutation (p.R1141X), have been identified in patients with PXE‐like cutaneous findings and vitamin K‐dependent coagulation factor deficiency. GGCX encodes a carboxylase which catalyses γ‐glutamyl carboxylation of coagulation factors as well as of matrix gla protein (MGP) which in fully carboxylated form serves as a systemic inhibitor of pathologic mineralisation. Collectively, these observations suggest the hypothesis that a consequence of loss‐of‐function mutations in the ABCC6 gene is the reduced vitamin K‐dependent γ‐glutamyl carboxylation of MGP, with subsequent connective tissue mineralisation. Further progress in understanding the detailed pathomechanisms of PXE should provide novel strategies to counteract, and perhaps cure, this complex heritable disorder at the genome–environment interface.


Journal of Investigative Dermatology | 2010

Pseudoxanthoma Elasticum: Molecular Genetics and Putative Pathomechanisms

Jouni Uitto; Qiaoli Li; Qiujie Jiang

Pseudoxanthoma elasticum (PXE), a prototypic heritable disorder with ectopic mineralization, manifests with characteristic skin findings, ocular involvement and cardiovascular problems, with considerable morbidity and mortality. The classic forms of PXE are due to loss-of-function mutations in the ABCC6 gene, which encodes ABCC6, a transmembrane efflux transporter expressed primarily in the liver. Several lines of evidence suggest that PXE is a primary metabolic disorder, which in the absence of ABCC6 transporter activity, displays reduced plasma anti-mineralization capacity due to reduced fetuin-A and matrix gla-protein (MGP) levels. MGP requires to be activated by gamma-glutamyl carboxylation, a vitamin K-dependent reaction, to serve in an anti-mineralization role in the peripheral connective tissue cells. Although the molecules transported from the hepatocytes to circulation by ABCC6 in vivo remain unidentified, it has been hypothesized that a critical vitamin K derivative, such as reduced vitamin K conjugated with glutathione, is secreted to circulation physiologically, but not in the absence of ABCC6 transporter activity. As a result, activation of MGP by gamma-glutamyl carboxylase is diminished, allowing slow yet progressive mineralization of connective tissues characteristic of PXE. Understanding of the pathomechanistic details of PXE provides a basis for the development of targeted molecular therapies for this currently intractable disease.


Journal of Investigative Dermatology | 2009

Elevated Dietary Magnesium Prevents Connective Tissue Mineralization in a Mouse Model of Pseudoxanthoma Elasticum (Abcc6

Jennifer LaRusso; Qiaoli Li; Qiujie Jiang; Jouni Uitto

Pseudoxanthoma elasticum (PXE) is an autosomal recessive multisystem disorder characterized by ectopic connective tissue mineralization, with clinical manifestations primarily in the skin, eyes, and cardiovascular system. There is considerable, both intra- and interfamilial, variability in the spectrum of phenotypic presentation. Previous studies have suggested that mineral content of the diet may modify the severity of the clinical phenotype in PXE. In this study, we utilized a targeted mutant mouse (Abcc6(-/-)) as a model system for PXE. We examined the effects of changes in dietary phosphate and magnesium on the mineralization process using calcification of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Mice placed on custom-designed diets either high or low in phosphate did not show changes in mineralization, which was similar to that noted in Abcc6(-/-) mice on control diet. However, mice placed on diet enriched in magnesium (fivefold) showed no evidence of connective tissue mineralization in this mouse model of PXE. The inhibitory capacity of magnesium was confirmed in a cell-based mineralization assay system in vitro. Collectively, our observations suggest that assessment of dietary magnesium in patients with PXE may be warranted.


Journal of Investigative Dermatology | 2009

Mutations in the GGCX and ABCC6 Genes in a Family with Pseudoxanthoma Elasticum-Like Phenotypes

Qiaoli Li; Dorothy K. Grange; Nicole L. Armstrong; Alison J. Whelan; Maria Yadira Hurley; Mark A. Rishavy; Kevin W. Hallgren; Kathleen L. Berkner; Leon J. Schurgers; Qiujie Jiang; Jouni Uitto

A characteristic feature of classic pseudoxanthoma elasticum (PXE), an autosomal recessive disorder caused by mutations in the ABCC6 gene, is aberrant mineralization of connective tissues, particularly the elastic fibers. Here, we report a family with PXE-like cutaneous features in association with multiple coagulation factor deficiency, an autosomal recessive disorder associated with GGCX mutations. The proband and her sister, both with severe skin findings with extensive mineralization, were compound heterozygotes for missense mutations in the GGCX gene, which were shown to result in reduced gamma-glutamyl carboxylase activity and in undercarboxylation of matrix gla protein. The probands mother and aunt, also manifesting with PXE-like skin changes, were heterozygous carriers of a missense mutation (p.V255M) in GGCX and a null mutation (p.R1141X) in the ABCC6 gene, suggesting digenic nature of their skin findings. Thus, reduced gamma-glutamyl carboxylase activity in individuals either compound heterozygous for a missense mutation in GGCX or with haploinsufficiency in GGCX in combination with heterozygosity for ABCC6 gene expression results in aberrant mineralization of skin leading to PXE-like phenotype. These findings expand the molecular basis of PXE-like phenotypes, and suggest a role for multiple genetic factors in pathologic tissue mineralization in general.


American Journal of Pathology | 2013

Mineralization/anti-mineralization networks in the skin and vascular connective tissues.

Qiaoli Li; Jouni Uitto

Ectopic mineralization has been linked to several common clinical conditions with considerable morbidity and mortality. The mineralization processes, both metastatic and dystrophic, affect the skin and vascular connective tissues. There are several contributing metabolic and environmental factors that make uncovering of the precise pathomechanisms of these acquired disorders exceedingly difficult. Several relatively rare heritable disorders share phenotypic manifestations similar to those in common conditions, and, consequently, they serve as genetically controlled model systems to study the details of the mineralization process in peripheral tissues. This overview will highlight diseases with mineral deposition in the skin and vascular connective tissues, as exemplified by familial tumoral calcinosis, pseudoxanthoma elasticum, generalized arterial calcification of infancy, and arterial calcification due to CD73 deficiency. These diseases, and their corresponding mouse models, provide insight into the pathomechanisms of soft tissue mineralization and point to the existence of intricate mineralization/anti-mineralization networks in these tissues. This information is critical for understanding the pathomechanistic details of different mineralization disorders, and it has provided the perspective to develop pharmacological approaches to counteract the consequences of ectopic mineralization.


Cell Cycle | 2011

Administration of vitamin K does not counteract the ectopic mineralization of connective tissues in Abcc6 (-/-) mice, a model for pseudoxanthoma elasticum.

Qiujie Jiang; Qiaoli Li; Alix E. Grand-Pierre; Leon J. Schurgers; Jouni Uitto

Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder manifesting with ectopic calcification of peripheral connective tissues, caused by mutations in the ABCC6 gene. Alterations in vitamin K metabolism have been suggested to contribute to the pathomechanisms of the mineralization process. In this study we administered vitamin K or its glutathione conjugate (K3-GSH) into Abcc6-/- mice which recapitulate features of PXE. Oral administration of vitamin K2 in dosages, which vastly exceed the amounts in control diet or the recommended amounts for humans, did not alter the ectopic mineralization in Abcc6-/- mice. Similarly, intravenous administration of K3-GSH did not alter the degree of mineralization. Testing of vitamin K2, K3 and K3-GSH in an in vitro calcification system provided no evidence of mineralization inhibition. Collectively, our data suggest that vitamin K deficiency in the peripheral tissues is not a simple explanation for development of mineral deposits in PXE.


Disease Models & Mechanisms | 2013

Mutant Enpp1asj mice as a model for generalized arterial calcification of infancy

Qiaoli Li; Haitao Guo; David W. Chou; Annerose Berndt; John P. Sundberg; Jouni Uitto

SUMMARY Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder, is characterized by early mineralization of blood vessels, often diagnosed by prenatal ultrasound and usually resulting in demise during the first year of life. It is caused in most cases by mutations in the ENPP1 gene, encoding an enzyme that hydrolyzes ATP to AMP and inorganic pyrophosphate, the latter being a powerful anti-mineralization factor. Recently, a novel mouse phenotype was recognized as a result of ENU mutagenesis – those mice developed stiffening of the joints, hence the mutant mouse was named ‘ages with stiffened joints’ (asj). These mice harbor a missense mutation, p.V246D, in the Enpp1 gene. Here we demonstrate that the mutant ENPP1 protein is largely absent in the liver of asj mice, and the lack of enzymatic activity results in reduced inorganic pyrophosphate (PPi) levels in the plasma, accompanied by extensive mineralization of a number of tissues, including arterial blood vessels. The progress of mineralization is highly dependent on the mineral composition of the diet, with significant shortening of the lifespan on a diet enriched in phosphorus and low in magnesium. These results suggest that the asj mouse can serve as an animal model for GACI.


Clinical and Translational Science | 2009

Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice-potential for treatment of pseudoxanthoma elasticum.

Qiaoli Li; Jennifer LaRusso; Alix E. Grand-Pierre; Jouni Uitto

Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6−/−). This “knock‐out” (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate‐enriched diet (magnesium concentration being 5‐fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate‐enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10‐fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long‐term (>4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate‐enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6−/− mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues.


Journal of Investigative Dermatology | 2014

Mutations in the ABCC6 Gene as a Cause of Generalized Arterial Calcification of Infancy: Genotypic Overlap with Pseudoxanthoma Elasticum

Qiaoli Li; Jill L. Brodsky; Laura K. Conlin; Bruce R. Pawel; Andrew C. Glatz; Rachel I. Gafni; Leon J. Schurgers; Jouni Uitto; Hakon Hakonarson; Matthew A. Deardorff; Michael A. Levine

Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder characterized by congenital calcification of large and medium sized arteries, associated with early myocardial infarction, heart failure, and stroke, and premature death. Most cases of GACI are caused by mutations in the ENPP1 gene. We first studied two siblings with GACI from a non-consanguineous family without mutations in the ENPP1 gene. To search for disease-causing mutations, we identified genomic regions shared between the two affected siblings but not their unaffected parents or brother. The ABCC6 gene, which is mutated in pseudoxanthoma elasticum (PXE), resided within a small region of homozygosity shared by the affected siblings. Sequence analysis of ABCC6 revealed that the two affected siblings were homozygous for the missense mutation p.R1314W. Subsequently, ABCC6 mutations were identified in five additional GACI families with normal ENPP1 sequences. Genetic mutations in ABCC6 in patients with PXE are associated with ectopic tissue mineralization in the skin and arterial blood vessels. Thus, our findings provide additional evidence that the ABCC6 gene product inhibits calcification under physiologic conditions and confirm a second locus for GACI. In addition, our study emphasizes the potential utility of shared homozygosity mapping to identify genetic causes of inherited disorders.


Journal of Investigative Dermatology | 2011

Zebrafish: a model system to study heritable skin diseases.

Qiaoli Li; Michael Frank; Christine Thisse; Bernard Thisse; Jouni Uitto

Heritable skin diseases represent a broad spectrum of clinical manifestations due to mutations in ∼500 different genes. A number of model systems have been developed to advance our understanding of the pathomechanisms of genodermatoses. Zebrafish (Danio rerio), a freshwater vertebrate, has a well-characterized genome, the expression of which can be easily manipulated. The larvae develop rapidly, with all major organs having developed by 5-6 days post-fertilization, including the skin, consisting of the epidermis comprising two cell layers and separated from the dermal collagenous matrix by a basement membrane. This perspective highlights the morphological and ultrastructural features of zebrafish skin, in the context of cutaneous gene expression. These observations suggest that zebrafish provide a useful model system to study the molecular aspects of skin development, as well as the pathogenesis and treatment of select heritable skin diseases.

Collaboration


Dive into the Qiaoli Li's collaboration.

Top Co-Authors

Avatar

Jouni Uitto

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiujie Jiang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Joshua Kingman

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Eli Sprecher

Tel Aviv Sourasky Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitao Guo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

András Váradi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer LaRusso

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge