Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiaorui Si is active.

Publication


Featured researches published by Qiaorui Si.


Advances in Mechanical Engineering | 2014

Numerical Investigation of Pressure Fluctuation in Centrifugal Pump Volute Based on SAS Model and Experimental Validation

Qiaorui Si; Jianping Yuan; Shouqi Yuan; Wenjie Wang; Lei Zhu; Gérard Bois

This paper presents an investigation of pressure fluctuation of a single-suction volute-type centrifugal pump, particularly volute casing, by using numerical and experimental methods. A new type of hybrid Reynolds-averaged Navier-Stokes/Large Eddy Simulation, referred to as the shear stress transport-scale-adaptive simulation (SAS) model, is employed to study the unsteady flow. Statistical analysis method is adopted to show the pressure fluctuation intensity distribution in the volute channel. A test rig for pressure pulsation measurement is built to validate the numerical simulation results using eight transient pressure sensors in the middle section of the volute wall. Results show that the SAS model can accurately predict the inner flow field of centrifugal pumps. Radial force acting on the impeller presents a star distribution related to the blade number. Pressure fluctuation intensity is strongest near the tongue and shows irregular distribution in the pump casing. Pressure fluctuation is distributed symmetrically at the cross-section of the volute casing because the volute can eliminate the rotational movement of the liquid discharged from the impeller. Blade passing frequency and its multiples indicate the dominant frequency of the monitoring points within the volute, and the low-frequency pulsation, particularly in the shaft component, increases when it operates at off-design condition, particularly with a small flow rate. The reason is that the vortex wave is enhanced at the off-design condition, which has an effect on the axle and is presented in the shaft component in the frequency domain.


Journal of Fluids Engineering-transactions of The Asme | 2015

An Experimental Study of the Flow Field Inside the Diffuser Passage of a Laboratory Centrifugal Pump

Qiaorui Si; Patrick Dupont; Annie-Claude Bayeul-Laine; Antoine Dazin; Olivier Roussette; Shouqi Yuan

Measurements are processed on a centrifugal pump model, which works with air and performs with the vane-island type diffuser of a real hydraulic pump, under five flow rates to investigate the internal flow characteristics and their influence on overall pump performance. The mean flow characteristics inside the diffuser are determined by using a miniature three-hole probe connected to an online data acquisition system. The flow structure at the inlet section of the diffuser is analyzed in detail, with a focus on the local pressure loss inside the vaneless gap and incidence angle distributions along the hub-to-shroud direction of the diffuser. Some existing calculations, including leakage effects, are used to evaluate the pressure recovery downstream of the impeller. Furthermore, particle image velocimetry (PIV) measurement results are obtained to help analyze the flow characteristics inside the vane-island diffuser. Each PIV measuring plane is related to one particular diffuser blade-to-blade channel and is analyzed by using the time-averaged method according to seven different relative positions of the impeller. Measurement results show that main loss is produced inside the vaneless part of the diffuser at low flow rates, which might have been caused by the strong rotor–stator interaction. When the impeller flow rate is greater than the diffuser design flow rate, a large fluctuating separated region occurs after the throat of the diffuser on the pressure side. Mean loss originates from the unsteady pressure downstream of the diffuser throat. For better characterization of the separations observed in previous experimental studies, complementary unsteady static pressure measurement campaigns have been conducted on the diffuser blade wall. The unsteadiness revealed by these measurements, as well as theirs effects on the diffuser performance, was then studied.


Advances in Mechanical Engineering | 2013

Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

Qiaorui Si; Shouqi Yuan; Jianping Yuan; Yun Liang

Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST) k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.


Advances in Mechanical Engineering | 2016

Investigation on the influence of jetting equipment on the characteristics of centrifugal pump

Qiaorui Si; Shouqi Yuan; Jianping Yuan; Gérard Bois

To reduce radial noises from the motor of centrifugal pumps, this study designed a water cooling system called jetting equipment to replace traditional fan cooling systems in pump motors. By measuring radiated noises, head, efficiency, and cavitation performance, the research compared the differences among experimental results of the original pump unit, the one with a normal design jetting pipe and another one with a larger jetting pipe. Results show that the radiated sound pressure level of the model pump was significantly reduced by 8.3 dB after integrating the jetting pipe. With a normal jetting pipe, no significant changes were observed in the head, efficiency, and shaft power curves, and cavitation performance improved under small flow rate. However, the performance with the larger jetting pipe worsened, except the hump phenomenon of the model pump under a small flow rate was enhanced. Computational fluid dynamics method was used to calculate the internal flow of three model pumps in order to investigate the jetting flow effect. A comparison among the flow fields at the inlet of the three types of pumps indicated that high-pressure water injection can effectively control inlet recirculation and improve velocity distribution in the inlet flow field with decreased recirculation vortex strength and recirculation onset critical flow rate.


IOP Conference Series: Materials Science and Engineering | 2015

Research on the characteristics of quasi-steady cavitation in a centrifugal pump

Jiaxing Lu; Shou Qi Yuan; X J Li; Qiaorui Si; Yin Luo

With the pressure decreasing, the process of cavitation in a centrifugal pump could be summarized as incipient cavitation, quasi-steady cavitation and unsteady cavitation. Quasi-steady cavitation is the condition that is between the incipient cavitation and unsteady cavitation in a centrifugal pump. Under this condition, the intensity of cavitation is relatively weak, and the head of the pump almost remains unchanged, but the cavitation exists, causing damage to the impeller by pitting and erosion. So it is important to investigate the quasi-steady cavitation. In this paper, both the numerical and experimental methods had been carried out to investigate the characteristics of quasi-steady cavitation. The internal flow in the pump, the performance of cavitation and the inlet and outlet pressure pulsation of the pump measured through experimental method have been studied under different NPSHa conditions. It was found that the head decreases about 0.77%-1.38% from non-cavitation condition and it could be regarded as the quasi-steady cavitation. Little change has been found from the internal flow between non-cavitation condition and quasi-steady cavitation condition. The period of inlet pressure pulsation changes from the time that the blade passes by to the period of shaft rotating with the development of cavitation. The dominant frequency of the inlet pressure pulsation is two times of shaft frequency whose amplitudes decrease firstly and then increase to a peak value, followed by a decrease to a low value in quasi-steady cavitation conditions. The dominant frequency of the outlet pressure pulsation is blade passing frequency whose amplitudes increase firstly and then decrease gradually with the decrease of NPSHa.


Chinese Journal of Mechanical Engineering | 2014

Numerical and experimental study on flow-induced noise at blade-passing frequency in centrifugal pumps

Jun Yang; Shouqi Yuan; Jianping Yuan; Qiaorui Si; Ji Pei

With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem’s assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.


Journal of Applied Mathematics | 2013

Multiobjective Optimization of Low-Specific-Speed Multistage Pumps by Using Matrix Analysis and CFD Method

Qiaorui Si; Shouqi Yuan; Jianping Yuan; Chuan Wang; Weigang Lu

The implementation of energy-saving and emission-reduction techniques has become a worldwide consensus. Thus, special attention should be provided to the field of pump optimization. With the objective of focusing on multiobjective optimization problems in low-specific-speed pumps, 10 parameters were carefully selected in this study for an (310) orthogonal experiment. The parameters include the outlet width of the impeller blade, blade number, and inlet setting angle of the guide vane. The numerical calculation appropriate for forecasting the performance of multistage pumps, such as the head, efficiency, and shaft power, was analyzed. Results were obtained after calculating the two-stage flow field of the pump through computational fluid dynamics (CFD) methods. A matrix method was proposed to optimize the results of the orthographic experiment. The optimal plan was selected according to the weight of each factor. Calculated results indicate that the inlet setting angle of the guide vane influences efficiency significantly and that the outlet angle of blades has an effect on the head and shaft power. A prototype was produced with the optimal plan for testing. The efficiency rating of the prototype reached 58.61%; maximum shaft power was within the design requirements, which verifies that the proposed method is feasible for pump optimization.


Advances in Mechanical Engineering | 2017

Investigation on the vibration and flow instabilities induced by cavitation in a centrifugal pump

Jiaxing Lu; Shouqi Yuan; Siva Parameswaran; Jianping Yuan; Xudong Ren; Qiaorui Si

Numerical calculations and experimental measurements were carried out in a closed hydraulic test rig to investigate the vibration characteristics and instabilities induced by the development of cavitation in a centrifugal pump. The internal flow characteristics in the impeller and vibration signals at four different positions of the pump system were analyzed during the cavitation process. The results revealed that the occurrence and development of cavitation could be effectively detected by the sudden increase in the intensity of vibration at the testing points. Corresponding relationships were formulated between the occurrence and the development of cavitation and the intensification of the vibration at the measuring locations. It was found out that the virtual incipient for cavitation was much smaller than the traditional “critical” point.


12<sup>th</sup> European Conference on Turbomachinery Fluid dynamics & Thermodynamics | 2017

Air-water two-phase flow experimental and numerical analysis in a low specific speed centrifugal pump

Qiaorui Si; Gérard Bois; Keyu Zhang; Jianping Yuan

The paper presents experimental and numerical investigations performed on a single stage, single-suction, horizontal-orientated centrifugal pump in air-water two-phase non condensable flow conditions. Experimental test loop allows performing controlled values of air void fraction for different water flow rates for a several rotational speeds. Global pump heads and efficiencies are obtained for several inlet air void fraction values at different rotating speeds up to pump performance breakdown. Similarity laws under two-phase flow condition are investigated at three selected rotating speeds. Numerical calculations are also performed using URANS approach including k-e turbulence and inhomogeneous two-phase models for nominal rotational speed, the results of which are used to understand some specific experimental results.


IOP Conference Series: Earth and Environmental Science | 2016

Experimental Study and Theoretical Analysis of the Rotating Stall in a Vaneless Diffuser of Radial Flow Pump

Yaguang Heng; Antoine Dazin; M N Ouarzazi; Qiaorui Si

This paper reports an experimental and theoretical study of rotating stall in a vaneless diffuser which is coupled with a radial impeller. The experiments were conducted at 22 flow rates for two rotating speed: 1200rpm and 1800rpm. The measurements have consisted of: i/ unsteady pressure measurements delivered by two microphones flush mounted on the vaneless diffuser, ii/ 9 steady pressure taps mounted in one radial line on the diffuser to measure the pressure recovery in the vaneless diffuser. The stability of each stall mode was also studied by a 2D linear analysis; and the theoretical prediction was compared to experimental observations. The capabilities and limits of such an approach to predict the development of rotating stall have been evaluated. A non-dimensional analysis of the pressure losses at outlet was conducted to evaluate the effect of the instability development on the performance of the diffuser. It has shown that the arising of rotating stall has a positive effect on the diffuser performance.

Collaboration


Dive into the Qiaorui Si's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Bois

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar

Antoine Dazin

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Roussette

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar

Patrick Dupont

École centrale de Lille

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge