Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiaoyang Xian is active.

Publication


Featured researches published by Qiaoyang Xian.


Vaccine | 2005

Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys

Jun Zhou; Wei Wang; Qiong Zhong; Wei Hou; Zhanqiu Yang; Shu-Yuan Xiao; Runqing Zhu; Zhijiao Tang; Yong Wang; Qiaoyang Xian; Hongbing Tang; Wen L

Abstract An inactivated vaccine for severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) was evaluated in rhesus monkeys. The monkeys were inoculated intramuscularly (i.m.) with 0.5, 5, 50, or 5000μg of vaccine, or PBS as control, and boosted on day 7. After 3 weeks, they were challenged with the NS-1 strain of SARS-CoV. The humoral and mucosal immune responses, clinical signs, chemical indices and viremia were monitored following the immunization and challenge. The control animals who received PBS developed atypical SAR-CoV infection after viral challenge, according to clinical, virological and pathological findings. No systematic side effects were observed in vaccinated animals post-immunization, even in at the high dose of 5000μg. The 50μg dosage of vaccine elicited SARS-CoV specific immune responses against viral infection as compared to the partial immunity elicited by 0.5 and 5μg doses. The results show that this inactivated vaccine can induce effective concomitant humoral and mucosal immunity against SARS-CoV infection, is safe in monkeys, and the vaccine maybe a good candidate for clinical trials.


Vaccine | 2009

Fusion protein Ag85B-MPT64190-198-Mtb8.4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice

Yu Luo; Bingxiang Wang; Lina Hu; Hongjuan Yu; Zejiao Da; Wenwen Jiang; Nannan Song; Yaqing Qie; Honghai Wang; Zhijiao Tang; Qiaoyang Xian; Ying Zhang; Bingdong Zhu

Tuberculosis (TB) remains a major infectious disease worldwide despite chemotherapy and BCG vaccine. The efficacy of the current TB vaccine BCG varies from 0 to 80%. New vaccines that have better protection than BCG or have the capability to boost BCG-primed immunity are urgently needed. We have previously constructed a fusion protein Ag85B-MPT64(190-198)-Mtb8.4 (AMM). In this study, we investigated the immunogenicity of the fusion protein AMM in a novel adjuvant of dimethyl-dioctyldecyl ammonium bromide and BCG polysaccharide nucleic acid (DDA-BCG PSN), and its capacity to boost BCG-primed immunity. The anti-Ag85B antibodies IgG1 and IgG2a were determined using ELISA and the number of spleen cells secreting IFN-gamma was determined by ELISPOT. In addition, the ability of the subunit vaccine AMM to boost BCG-primed immunity against Mycobacterium tuberculosis was analyzed. The fusion protein AMM induced more effective humoral and cell-mediated immune responses in mice than Ag85B alone. Mice primed with BCG vaccination followed by boosting with AMM produced a stronger immune response and afforded a better protection against M. tuberculosis infection than mice immunized with BCG alone or BCG priming followed by boosting with Ag85B. These findings suggest that AMM is a promising candidate subunit vaccine to enhance the protective efficiency of BCG.


Scandinavian Journal of Immunology | 2011

Immunogenicity and Protective Efficacy of a Fusion Protein Vaccine Consisting of Antigen Ag85B and HspX against Mycobacterium tuberculosis Infection in Mice

Qing Li; Hongjuan Yu; Ying Zhang; Bingxiang Wang; Wenwen Jiang; Zejiao Da; Qiaoyang Xian; Yong Wang; Xiangwen Liu; Bingdong Zhu

Subunit vaccines have the potential advantage to boost Mycobacterium bovis Bacillus Calmette‐Guérin (BCG)‐primed immunity in adults. However, most candidates are antigens highly expressed in replicating bacilli but not in dormant or persisting bacilli, which exist during Mycobacterium tuberculosis infection. We constructed M. tuberculosis fusion protein Ag85B‐Mpt64190–198‐HspX (AMH) and Ag85B‐Mpt64190–198‐Mtb8.4 (AMM), which consist of Ag85B, the 190–198 peptide of Mpt64, HspX (Rv2031c) and Mtb8.4 (Rv1174c), respectively. AMH and/or AMM were mixed with adjuvants composed of dimethyl‐dioctyldecyl ammonium bromide and BCG polysaccharide nucleic acid (DDA‐BCG PSN) to construct subunit vaccines. Mice were immunized thrice with Ag85B, AMH and AMM vaccines and the immunogenicity of the fusion protein vaccines was determined. Then, mice were primed with BCG and boosted twice with Ag85B, AMH, AMM and AMM + AMH vaccines, respectively, followed by challenging with M. tuberculosis virulent strain H37Rv, and the immune responses and protective effects were measured. It was found that mice immunized with AMH vaccine generated high levels of antigen‐specific cell‐mediated responses. Compared with the group injected only with BCG, the mice boosted with AMM, AMH and AMM + AMH produced higher levels of Ag85B‐specific IgG1 and IgG2a and IFN‐γ‐secreting T cells upon Ag85B and Mycobacterium tuberculosis purified protein derivative (PPD) stimulation. It is interesting that only mice boosted with AMM + AMH had significantly lower bacterial count in the lungs than those receiving BCG, whereas mice boosted with AMH or AMM did not. The results suggest that AMH consisting of HspX, the antigen highly expressed in dormant bacilli, could be combined with antigens from replicating bacilli to enhance BCG primed immunity so as to provide better protection against both growing and non‐growing bacteria that occur during the infection process.


Journal of Neuroimmune Pharmacology | 2011

M. tuberculosis H37Rv Infection of Chinese Rhesus Macaques

Jing Zhang; Yan-Qing Ye; Yong Wang; Ping-Zheng Mo; Qiaoyang Xian; Yan Rao; Rong Bao; Ming Dai; Jun-Yan Liu; Ming Guo; Xin Wang; Zhixiang Huang; Lihua Sun; Zhijiao Tang; Wen-Zhe Ho

Mycobacterium tuberculosis is the most common communicable infectious disease worldwide and the top killer of human immunodeficiency virus (HIV)-infected people. Because of common dual HIV and M. tuberculosis infections, the emergence of multidrug-resistant M. tuberculosis strains, the lack of effective vaccination, the morbidity, and the mortality of M. tuberculosis infection are increasing sharply. Therefore, there is an urgent need for vaccine and drug development against M. tuberculosis infection. These require appropriate animal models that closely resemble human disease. To this end, we infected Chinese rhesus macaques with the M. tuberculosis H37Rv strain. Bronchoscopy was used to inoculate nine monkeys with different doses of M. tuberculosis H37Rv strain. Regardless of the M. tuberculosis dose, all monkeys were infected successfully. This was shown by clinical, laboratory, and histopathology assessments. Among nine infected monkeys, six developed acute rapid progressive tuberculosis and the remaining animals mirrored early-stage chronic disease. These data, taken together, demonstrate that Chinese rhesus macaques are highly susceptible to M. tuberculosis infection and develop similar manifestations of disease that are seen in humans. This model affords new opportunities for studies of M. tuberculosis disease pathology and therapeutics.


Tuberculosis | 2014

Mycobacterium tuberculosis Erdman infection of rhesus macaques of Chinese origin

Jing Zhang; Qiaoyang Xian; Ming Guo; Zhixiang Huang; Yan Rao; Yong Wang; Xin Wang; Rong Bao; Thomas G. Evans; David A. Hokey; Donata Sizemore; Wen-Zhe Ho

Continuous high global tuberculosis (TB) mortality rates and variable vaccine efficacy of mycobacterium Bacille Calmette-Guérin (BCG) emphasize the need for improved vaccines and drugs against TB, which require clinically relevant animal models for evaluation. We infected a total of 24 Chinese rhesus macaques with varying doses (CFU of 25, 100 and 500) of Mycobacterium tuberculosis (M.tb) Erdman strain via bronchoscopy. Regardless of the M.tb doses, all animals were infected successfully with minor differences in clinical progression; as evidenced by clinical manifestations, laboratory analyses, bacterial burden in infected tissues and histopathology evaluations. Rhesus macaques of Chinese origin are highly susceptible to infection with M.tb Erdman strain and develop acute TB disease, which is similar to that in humans. Pathologically, Chinese rhesus macaques recapitulated the complete spectrum of granulomatous lesions seen in human TB disease. These data indicate that low-dose infection of rhesus macaques of Chinese origin is a suitable model for acute M.tb infection.


Science China-life Sciences | 2012

Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis

Yongrong Zhang; Jian Liu; Yong Wang; Qiaoyang Xian; LingYun Shao; Zhong Yang; XiaoNing Wang

This study investigated the therapeutic effects of interleukin (IL)-2 and granulocyte-macrophage colony-stimulating factor (GM-CSF) co-administrated with antibacterial agents isoniazid (INH) and rifampin (RIF) to treat a mouse model of tuberculosis (TB) infection. A drug-susceptible TB strain, H37Rv was used to infect mice and the effectiveness of IL-2 and GM-CSF was initially evaluated based on survival rate, bacterial counts in lungs and spleens and the pathological condition of the lungs. Next, the therapeutic effect of the immunotherapy regimen was assessed in multidrug-resistant strain OB35-infected mice. In the H37Rv infection model, IL-2 and GM-CSF monotherapies reduced bacterial numbers in the lungs by 0.82 (P<0.01) and 0.58 (P<0.05) lg colony-forming units (CFU), respectively, and in the spleens by 1.42 (P<0.01) and 1.22 (P<0.01) lg CFU, respectively, compared with the untreated group. Mice receiving immunotherapy developed fewer lesions in the lungs compared with mice receiving antibacterial therapy alone. In the OB35 infection model, immunotherapy with either cytokine resulted in a significant reduction of bacterial load in the lungs and spleens and less severe lesions in the lungs compared with the untreated or antibacterial therapy treated mice. Notably, mice receiving immunotherapy with both cytokines had a 30% survival rate which was higher than that in other treated groups, and had significantly less CFUs in the lungs and spleens (1.02 and 1.34 lg CFU) compared with antibacterial therapy alone (P<0.01). This study demonstrated that immunotherapy with both IL-2 and GM-CSF may be useful to treat multidrug resistant tuberculosis (MDR-TB).


PLOS ONE | 2015

Multi-Stage Tuberculosis Subunit Vaccine Candidate LT69 Provides High Protection against Mycobacterium tuberculosis Infection in Mice

Hongxia Niu; Jinxiu Peng; Chunxiang Bai; Xun Liu; Lina Hu; Yanping Luo; Bingxiang Wang; Ying Zhang; Jianzhu Chen; Hongjuan Yu; Qiaoyang Xian; Bingdong Zhu

Effective tuberculosis (TB) vaccine should target tubercle bacilli with various metabolic states and confer long-term protective immunity. In this study, we constructed a novel multi-stage TB subunit vaccine based on fusion protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-HspX (LT69 for short) which combined early expressed antigens and latency-associated antigen. The fusion protein was mixed with an adjuvant being composed of N, N’-dimethyl-N, N’-dioctadecylammonium bromide (DDA) and polyriboinosinic polyribocytidylic acid (PolyI:C) to construct subunit vaccine, whose immunogenicity and protective ability were evaluated in C57BL/6 mice. The results showed that LT69 had strong immunogenicity and high protective effect against Mycobacterium tuberculosis (M. tuberculosis) H37Rv aerosol challenge. Low-dose (2 μg) of LT69 generated long-term immune memory responses and provided effective protection, which was even higher than traditional vaccine BCG did at 30 weeks post the last vaccination. In conclusion, multistage subunit vaccine LT69 showed high and long-term protection against M. tuberculosis infection in mice, whose effect could be enhanced by using a relative low dosage of antigen.


Frontiers in Immunology | 2016

Comparative Analysis of Immune Activation Markers of CD8+ T Cells in Lymph Nodes of Different Origins in SIV-Infected Chinese Rhesus Macaques

Jin-Biao Liu; Qianhao Xiao; Run-Hong Zhou; Yong Wang; Qiaoyang Xian; Tong-Cui Ma; Ke Zhuang; Li Zhou; Deyin Guo; Xu Wang; Wen-Zhe Ho; Jieliang Li

Altered T-cell homeostasis, such as expansion of CD8+ T cells to the secondary lymphatic compartments, has been suggested as a mechanism of HIV/simian immunodeficiency virus (SIV)-pathogenesis. However, the role of immune activation of CD8+ T cells in the CD4/CD8 turnover and viral replication in these tissues is not completely understood. In this study, we compared the expression of immune activation markers (CD69 and HLA-DR) on CD8+ T cells in the peripheral blood and lymph nodes (LNs) of SIV-infected/uninfected Chinese rhesus macaques. SIV-infected macaques had significantly higher percentages of CD8+CD69+ and CD8+HLA-DR+ T cells in all these anatomical compartments than uninfected macaques. LNs that located close to the gastrointestinal (GI) tract (colon, mesenteric, and iliac LNs) of SIV-infected macaques had profoundly lower numbers of CD4+ T cells, but no significant difference in expression of activation marker (CD8+CD69+ and CD8+HLA-DR+) as compared with the peripheral lymphatic tissues (axillary and inguinal LNs). The CD4/CD8 ratios were negatively correlated with the activation of CD8+ T cells in the overall LNs, with further associations with CD8+HLA-DR+ in GI LNs while CD8+CD69+ in peripheral LNs. These observations demonstrate that the increase of CD8+ T cell activation is a contributing factor for the decline of CD4/CD8 ratios in GI system.


Vaccine | 2012

Neonatal revaccination with Bacillus Calmette-Guérin elicits improved, early protection against Mycobacterium tuberculosis in mice.

Wen Li; H. Huang; Wen Hua; Suqin Ben; Hui Liu; Bing Xu; Qiaoyang Xian; Zhijiao Tang; Huahao Shen

The protective effect of revaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) against Mycobacterium tuberculosis in animals is controversial. To investigate whether revaccination of neonates with BCG could improve the protection against M. tuberculosis, C57BL/6 neonates were vaccinated with BCG on day 1, or on days 1, 7, and 14, and the mice at eight weeks of age were challenged with M. tuberculosis and monitored for survival. The M. tuberculosis burden in their livers and lungs, the pathological changes in the lungs, their splenic T cell responses and serum cytokines were examined longitudinally post-challenge. BCG vaccination significantly prevented the M. tuberculosis-related mouse death and reduced the burden of M. tuberculosis in the liver and lungs, and lung damage in the mice, particularly at early stage of the pathogenic process in the BCG-revaccinated mice. However, the BCG revaccination-induced protection waned over time. BCG vaccination did not significantly modulate the levels of serum IFN-γ and the frequency of splenic PPD-reactive IFN-γ-secreting T cells, but significantly decreased the levels of serum TNF-α and PPD-specific IL-4 responses at 3 weeks post challenge. Taken together, these data suggest that revaccination of neonates with BCG elicits improved, early protection against M. tuberculosis by modulating cytokine responses in adult mice.


Pharmacology | 2010

In vitro and in vivo Activities of a New Lead Compound I2906 against Mycobacterium tuberculosis

Jingning Lu; Jun Yue; Jing Wu; Rusong Luo; Zhidong Hu; Jianrong Li; Yun Bai; Zhijiao Tang; Qiaoyang Xian; Xuelian Zhang; Honghai Wang

Background: Due to the long duration of treatment and the emergence of multidrug-resistant strains, new antitubercular agents are urgently needed. I2906, as a novel lead, was screened and tested for efficacy in vitro and in vivo. Methods:To determine the efficacy of I2906,the minimum inhibitory concentrations against Mycobacterium tuberculosis and cytotoxicity were tested, and its in vivo activities were assessed by administering it to mice infected with M. tuberculosis H37Rv or multidrug-resistant strain. Results:Under in vitro conditions, I2906 showed excellent antimycobacterial activities and low cytotoxicity. In a murine model infected with M. tuberculosis H37Rv, the reductions on bacterial loads of both lungs and spleen were statistically significant (p < 0.05) between I2906-treated mice and untreated controls after 4 weeks. Further, the colony-forming unit counts in the lungs were dramatically lower (p < 0.05) than that of isoniazid-treated mice by the addition of I2906 after 8 weeks. Moreover, survival rate was increased by I2906 treatment. For multidrug-resistant strain infection, bacterial counts were reduced significantly in the lungs and spleen due to I2906 treatment in comparison with data from untreated controls (p < 0.05). Conclusions: I2906 displayed potential antimicrobial activities against M. tuberculosis H37Rv and drug-resistant strains in vitro and in vivo, and could improve efficacy of isoniazid in vivo.

Collaboration


Dive into the Qiaoyang Xian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge