Qiaoyi Liang
The Chinese University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiaoyi Liang.
Nature Biotechnology | 2015
Liang Xiao; Qiang Feng; Suisha Liang; Si Brask Sonne; Zhongkui Xia; Xinmin Qiu; Xiaoping Li; Hua Long; Jianfeng Zhang; Dongya Zhang; Chuan Liu; Zhiwei Fang; Joyce Chou; Jacob Glanville; Qin Hao; Dorota Ewa Kotowska; Camilla Colding; Tine Rask Licht; Donghai Wu; Jun Yu; Joseph Jao Yiu Sung; Qiaoyi Liang; Junhua Li; Huijue Jia; Zhou Lan; Valentina Tremaroli; Piotr Dworzynski; H. Bjørn Nielsen; Fredrik Bäckhed; Joël Doré
We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.
Nature Communications | 2015
Geicho Nakatsu; Xiangchun Li; Haokui Zhou; Jianqiu Sheng; William Ka Kai Wu; Siew C. Ng; Ho Tsoi; Yujuan Dong; Ning Zhang; Yuqi He; Qian Kang; Lei Cao; Kunning Wang; Jingwan Zhang; Qiaoyi Liang; Jun Yu; Joseph J.Y. Sung
Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.
Gut | 2017
J Yu; Qiang Feng; Dongya Zhang; Qiaoyi Liang; Qin Y; Longqing Tang; Zhao H; Jan Stenvang; Yingrui Li; Xiaojuan Wang; Xuenian Xu; Nan Chen; William Ka Kei Wu; Jumana Y. Al-Aama; Hans Jørgen Nielsen; Pia Kiilerich; Benjamin Anderschou Holbech Jensen; Yau To; Zhou Lan; Huijue Jia; Jinxiu Li; Liang Xiao; Thomas Y. Lam; Siew C. Ng; Alfred Sl Cheng; Vincent Wai-Sun Wong; F. K. L. Chan; Yang H; Lise Madsen; Christian Datz
Objective To evaluate the potential for diagnosing colorectal cancer (CRC) from faecal metagenomes. Design We performed metagenome-wide association studies on faecal samples from 74 patients with CRC and 54 controls from China, and validated the results in 16 patients and 24 controls from Denmark. We further validated the biomarkers in two published cohorts from France and Austria. Finally, we employed targeted quantitative PCR (qPCR) assays to evaluate diagnostic potential of selected biomarkers in an independent Chinese cohort of 47 patients and 109 controls. Results Besides confirming known associations of Fusobacterium nucleatum and Peptostreptococcus stomatis with CRC, we found significant associations with several species, including Parvimonas micra and Solobacterium moorei. We identified 20 microbial gene markers that differentiated CRC and control microbiomes, and validated 4 markers in the Danish cohort. In the French and Austrian cohorts, these four genes distinguished CRC metagenomes from controls with areas under the receiver-operating curve (AUC) of 0.72 and 0.77, respectively. qPCR measurements of two of these genes accurately classified patients with CRC in the independent Chinese cohort with AUC=0.84 and OR of 23. These genes were enriched in early-stage (I–II) patient microbiomes, highlighting the potential for using faecal metagenomic biomarkers for early diagnosis of CRC. Conclusions We present the first metagenomic profiling study of CRC faecal microbiomes to discover and validate microbial biomarkers in ethnically different cohorts, and to independently validate selected biomarkers using an affordable clinically relevant technology. Our study thus takes a step further towards affordable non-invasive early diagnostic biomarkers for CRC from faecal samples.
Gut | 2015
Jun Yu; William Ka Kei Wu; Xiangchun Li; Jun He; Xiaoxing Li; Simon S.M. Ng; Chang Yu; Zhibo Gao; Jie Yang; Miao Li; Qiaoxiu Wang; Qiaoyi Liang; Yi Pan; Joanna H. Tong; Ka F. To; Nathalie Wong; Ning Zhang; Jie Chen; Youyong Lu; Paul B.S. Lai; Francis K.L. Chan; Yingrui Li; Hsiang-Fu Kung; Huanming Yang; Jun Wang; Joseph J.Y. Sung
Background Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. Objective To identify recurrent somatic mutations with prognostic significance in patients with CRC. Method Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Results Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6–14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. Conclusions The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging.
Cancer | 2013
Junhong Zhao; Qiaoyi Liang; Kin-Fai Cheung; Wei Kang; Raymond Wai-Ming Lung; Joanna H.M. Tong; Ka Fai To; Joseph J.Y. Sung; Jun Yu
Aberrant methylation of tumor‐related genes has been reported in Epstein‐Barr virus (EBV)‐associated gastric cancers. This study sought to profile EBV‐driven hypermethylation in EBV‐infected cells.
PLOS ONE | 2013
Chung-Wah Wu; Yujuan Dong; Qiaoyi Liang; Xinqi He; Simon S.M. Ng; Francis K.L. Chan; Joseph J.Y. Sung; Jun Yu
Background miR-18a is one of the most up-regulated miRNAs in colorectal cancers (CRC) based on miRNA profiling. In this study, we examined the functional significance of miR-18a in CRC. Methods Expression of miR-18a was investigated in 45 CRC patients. Potential target genes of miR-18a were predicted by in silico search and confirmed by luciferase activity assay and Western blot. DNA damage was measured by comet assay. Gene function was measured by cell viability, colony formation and apoptosis assays. Results The up-regulation of miR-18a was validated and confirmed in 45 primary CRC tumors compared with adjacent normal tissues (p<0.0001). Through in silico search, the 3′UTR of Ataxia telangiectasia mutated (ATM) contains a conserved miR-18a binding site. Expression of ATM was down-regulated in CRC tumors (p<0.0001) and inversely correlated with miR-18a expression (r = -0.4562, p<0.01). Over-expression of miR-18a in colon cancer cells significantly reduced the luciferase activity of the construct with wild-type ATM 3′UTR but not that with mutant ATM 3′UTR, inferring a direct interaction of miR-18a with ATM 3′UTR. This was further confirmed by the down-regulation of ATM protein by miR-18a. As ATM is a key enzyme in DNA damage repair, we evaluated the effect of miR-18a on DNA double-strand breaks. Ectopic expression of miR-18a significantly inhibited the repair of DNA damage induced by etoposide (p<0.001), leading to accumulation of DNA damage, increase in cell apoptosis and poor clonogenic survival. Conclusion miR-18a attenuates cellular repair of DNA double-strand breaks by directly suppressing ATM, a key enzyme in DNA damage repair.
Cell Research | 2014
Chang Yu; Jun Yu; Xiaotian Yao; William Ka Kei Wu; Youyong Lu; Senwei Tang; Xiangchun Li; Li Bao; Xiaoxing Li; Yong Hou; Renhua Wu; Min Jian; Ruoyan Chen; Fan Zhang; Lixia Xu; Fan Fan; Jun He; Qiaoyi Liang; Hongyi Wang; Xueda Hu; Minghui He; Xiang Zhang; Hancheng Zheng; Qibin Li; Hanjie Wu; Yan Chen; Xu Yang; Shida Zhu; Xun Xu; Huanming Yang
Single-cell sequencing is a powerful tool for delineating clonal relationship and identifying key driver genes for personalized cancer management. Here we performed single-cell sequencing analysis of a case of colon cancer. Population genetics analyses identified two independent clones in tumor cell population. The major tumor clone harbored APC and TP53 mutations as early oncogenic events, whereas the minor clone contained preponderant CDC27 and PABPC1 mutations. The absence of APC and TP53 mutations in the minor clone supports that these two clones were derived from two cellular origins. Examination of somatic mutation allele frequency spectra of additional 21 whole-tissue exome-sequenced cases revealed the heterogeneity of clonal origins in colon cancer. Next, we identified a mutated gene SLC12A5 that showed a high frequency of mutation at the single-cell level but exhibited low prevalence at the population level. Functional characterization of mutant SLC12A5 revealed its potential oncogenic effect in colon cancer. Our study provides the first exome-wide evidence at single-cell level supporting that colon cancer could be of a biclonal origin, and suggests that low-prevalence mutations in a cohort may also play important protumorigenic roles at the individual level.
Molecular Cancer | 2015
Wei Kang; Joanna Hm Tong; Raymond Wm Lung; Yujuan Dong; Junhong Zhao; Qiaoyi Liang; Li Zhang; Yi Pan; Weiqin Yang; Jesse Cs Pang; Alfred Sl Cheng; Jun Yu; Ka Fai To
BackgroundMicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.MethodsThe expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.ResultsWe found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.ConclusionIn conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.
Gastroenterology | 2014
Qiaoyi Liang; Xiaotian Yao; Senwei Tang; Jingwan Zhang; Tung On Yau; Xiaoxing Li; Ceen-Ming Tang; Wei Kang; Raymond Wai-Ming Lung; Jing-Woei Li; Ting-Fung Chan; Rui Xing; Youyong Lu; Kwok Wai Lo; Nathalie Wong; Ka Fai To; Chang Yu; Francis K.L. Chan; Joseph J.Y. Sung; Jun Yu
BACKGROUND & AIMS The mechanisms by which Epstein-Barr virus (EBV) contributes to the development of gastric cancer are unclear. We investigated EBV-associated genomic and epigenomic variations in gastric cancer cells and tumors. METHODS We performed whole-genome, transcriptome, and epigenome sequence analyses of a gastric adenocarcinoma cell line (AGS cells), before and after EBV infection. We then looked for alterations in gastric tumor samples, with (n = 34) or without (n = 100) EBV infection, collected from patients at the Prince of Wales Hospital, Chinese University of Hong Kong (from 1998 through 2004), or the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (from 1999 through 2006). RESULTS Transcriptome analysis showed that infected cells expressed 9 EBV genes previously detected in EBV-associated gastric tumors and 71 EBV genes not previously reported in gastric tumors. Ten viral genes that had not been reported previously in gastric cancer but were expressed most highly in EBV-infected cells also were expressed in primary EBV-positive gastric tumors. Whole-genome sequence analysis identified 45 EBV-associated nonsynonymous mutations. These mutations, in genes such as AKT2, CCNA1, MAP3K4, and TGFBR1, were associated significantly with EBV-positive gastric tumors, compared with EBV-negative tumors. An activating mutation in AKT2 was associated with reduced survival times of patients with EBV-positive gastric cancer (P = .006); this mutation was found to dysregulate mitogen-activated protein kinase signaling. Integrated epigenome and transcriptome analyses identified 216 genes transcriptionally down-regulated by EBV-associated hypermethylation; methylation of ACSS1, FAM3B, IHH, and TRABD increased significantly in EBV-positive tumors. Overexpression of Indian hedgehog (IHH) and TraB domain containing (TRABD) increased proliferation and colony formation of gastric cancer cells, whereas knockdown of these genes reduced these activities. We found 5 signaling pathways (axon guidance, focal adhesion formation, interactions among cytokines and receptors, mitogen-activated protein kinase signaling, and actin cytoskeleton regulation) to be affected commonly by EBV-associated genomic and epigenomic alterations. CONCLUSIONS By using genomic, transcriptome, and epigenomic comparisons of EBV infected vs noninfected gastric cancer cells and tumor samples, we identified alterations in genes, gene expression, and methylation that affect different signaling networks. These might be involved in EBV-associated gastric carcinogenesis.
Clinical Cancer Research | 2017
Qiaoyi Liang; Jonathan Chiu; Ying-Xuan Chen; Yanqin Huang; Akira Higashimori; Jing-Yuan Fang; Hassan Ashktorab; Siew C. Ng; Simon Siu Man Ng; Francis Ka-Leung Chan; Joseph Jao Yiu Sung; Jun Yu
Purpose: Gut microbiota have been implicated in the development of colorectal cancer. We evaluated the utility of fecal bacterial marker candidates identified by our metagenome sequencing analysis for colorectal cancer diagnosis. Experimental Design: Subjects (total 439; 203 colorectal cancer and 236 healthy subjects) from two independent Asian cohorts were included. Probe-based duplex quantitative PCR (qPCR) assays were established for the quantification of bacterial marker candidates. Results: Candidates identified by metagenome sequencing, including Fusobacterium nucleatum (Fn), Bacteroides clarus (Bc), Roseburia intestinalis (Ri), Clostridium hathewayi (Ch), and one undefined species (labeled as m7), were examined in fecal samples of 203 colorectal cancer patients and 236 healthy controls by duplex-qPCR. Strong positive correlations were demonstrated between the quantification of each candidate by our qPCR assays and metagenomics approach (r = 0.801–0.934, all P < 0.0001). Fn was significantly more abundant in colorectal cancer than controls (P < 0.0001), with AUROC of 0.868 (P < 0.0001). At the best cut-off value maximizing sum of sensitivity and specificity, Fn discriminated colorectal cancer from controls with a sensitivity of 77.7%, and specificity of 79.5% in cohort I. A simple linear combination of four bacteria (Fn + Ch + m7-Bc) showed an improved diagnostic ability compared with Fn alone (AUROC = 0.886, P < 0.0001) in cohort I. These findings were further confirmed in an independent cohort II. In particular, improved diagnostic performances of Fn alone (sensitivity 92.8%, specificity 79.8%) and four bacteria (sensitivity 92.8%, specificity 81.5%) were achieved in combination with fecal immunochemical testing for the detection of colorectal cancer. Conclusions: Stool-based colorectal cancer–associated bacteria can serve as novel noninvasive diagnostic biomarkers for colorectal cancer. Clin Cancer Res; 23(8); 2061–70. ©2016 AACR.